Annotation of rpl/lapack/lapack/zsprfs.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZSPRFS
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZSPRFS + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsprfs.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsprfs.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsprfs.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
        !            22: *                          FERR, BERR, WORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          UPLO
        !            26: *       INTEGER            INFO, LDB, LDX, N, NRHS
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IPIV( * )
        !            30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
        !            32: *      $                   X( LDX, * )
        !            33: *       ..
        !            34: *  
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> ZSPRFS improves the computed solution to a system of linear
        !            42: *> equations when the coefficient matrix is symmetric indefinite
        !            43: *> and packed, and provides error bounds and backward error estimates
        !            44: *> for the solution.
        !            45: *> \endverbatim
        !            46: *
        !            47: *  Arguments:
        !            48: *  ==========
        !            49: *
        !            50: *> \param[in] UPLO
        !            51: *> \verbatim
        !            52: *>          UPLO is CHARACTER*1
        !            53: *>          = 'U':  Upper triangle of A is stored;
        !            54: *>          = 'L':  Lower triangle of A is stored.
        !            55: *> \endverbatim
        !            56: *>
        !            57: *> \param[in] N
        !            58: *> \verbatim
        !            59: *>          N is INTEGER
        !            60: *>          The order of the matrix A.  N >= 0.
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] NRHS
        !            64: *> \verbatim
        !            65: *>          NRHS is INTEGER
        !            66: *>          The number of right hand sides, i.e., the number of columns
        !            67: *>          of the matrices B and X.  NRHS >= 0.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] AP
        !            71: *> \verbatim
        !            72: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
        !            73: *>          The upper or lower triangle of the symmetric matrix A, packed
        !            74: *>          columnwise in a linear array.  The j-th column of A is stored
        !            75: *>          in the array AP as follows:
        !            76: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            77: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] AFP
        !            81: *> \verbatim
        !            82: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
        !            83: *>          The factored form of the matrix A.  AFP contains the block
        !            84: *>          diagonal matrix D and the multipliers used to obtain the
        !            85: *>          factor U or L from the factorization A = U*D*U**T or
        !            86: *>          A = L*D*L**T as computed by ZSPTRF, stored as a packed
        !            87: *>          triangular matrix.
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in] IPIV
        !            91: *> \verbatim
        !            92: *>          IPIV is INTEGER array, dimension (N)
        !            93: *>          Details of the interchanges and the block structure of D
        !            94: *>          as determined by ZSPTRF.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in] B
        !            98: *> \verbatim
        !            99: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           100: *>          The right hand side matrix B.
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in] LDB
        !           104: *> \verbatim
        !           105: *>          LDB is INTEGER
        !           106: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in,out] X
        !           110: *> \verbatim
        !           111: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           112: *>          On entry, the solution matrix X, as computed by ZSPTRS.
        !           113: *>          On exit, the improved solution matrix X.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in] LDX
        !           117: *> \verbatim
        !           118: *>          LDX is INTEGER
        !           119: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[out] FERR
        !           123: *> \verbatim
        !           124: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           125: *>          The estimated forward error bound for each solution vector
        !           126: *>          X(j) (the j-th column of the solution matrix X).
        !           127: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           128: *>          is an estimated upper bound for the magnitude of the largest
        !           129: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           130: *>          largest element in X(j).  The estimate is as reliable as
        !           131: *>          the estimate for RCOND, and is almost always a slight
        !           132: *>          overestimate of the true error.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] BERR
        !           136: *> \verbatim
        !           137: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           138: *>          The componentwise relative backward error of each solution
        !           139: *>          vector X(j) (i.e., the smallest relative change in
        !           140: *>          any element of A or B that makes X(j) an exact solution).
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[out] WORK
        !           144: *> \verbatim
        !           145: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] RWORK
        !           149: *> \verbatim
        !           150: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] INFO
        !           154: *> \verbatim
        !           155: *>          INFO is INTEGER
        !           156: *>          = 0:  successful exit
        !           157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           158: *> \endverbatim
        !           159: *
        !           160: *> \par Internal Parameters:
        !           161: *  =========================
        !           162: *>
        !           163: *> \verbatim
        !           164: *>  ITMAX is the maximum number of steps of iterative refinement.
        !           165: *> \endverbatim
        !           166: *
        !           167: *  Authors:
        !           168: *  ========
        !           169: *
        !           170: *> \author Univ. of Tennessee 
        !           171: *> \author Univ. of California Berkeley 
        !           172: *> \author Univ. of Colorado Denver 
        !           173: *> \author NAG Ltd. 
        !           174: *
        !           175: *> \date November 2011
        !           176: *
        !           177: *> \ingroup complex16OTHERcomputational
        !           178: *
        !           179: *  =====================================================================
1.1       bertrand  180:       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
                    181:      $                   FERR, BERR, WORK, RWORK, INFO )
                    182: *
1.9     ! bertrand  183: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  186: *     November 2011
1.1       bertrand  187: *
                    188: *     .. Scalar Arguments ..
                    189:       CHARACTER          UPLO
                    190:       INTEGER            INFO, LDB, LDX, N, NRHS
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       INTEGER            IPIV( * )
                    194:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    195:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                    196:      $                   X( LDX, * )
                    197: *     ..
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Parameters ..
                    202:       INTEGER            ITMAX
                    203:       PARAMETER          ( ITMAX = 5 )
                    204:       DOUBLE PRECISION   ZERO
                    205:       PARAMETER          ( ZERO = 0.0D+0 )
                    206:       COMPLEX*16         ONE
                    207:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    208:       DOUBLE PRECISION   TWO
                    209:       PARAMETER          ( TWO = 2.0D+0 )
                    210:       DOUBLE PRECISION   THREE
                    211:       PARAMETER          ( THREE = 3.0D+0 )
                    212: *     ..
                    213: *     .. Local Scalars ..
                    214:       LOGICAL            UPPER
                    215:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
                    216:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    217:       COMPLEX*16         ZDUM
                    218: *     ..
                    219: *     .. Local Arrays ..
                    220:       INTEGER            ISAVE( 3 )
                    221: *     ..
                    222: *     .. External Subroutines ..
                    223:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZSPMV, ZSPTRS
                    224: *     ..
                    225: *     .. Intrinsic Functions ..
                    226:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    227: *     ..
                    228: *     .. External Functions ..
                    229:       LOGICAL            LSAME
                    230:       DOUBLE PRECISION   DLAMCH
                    231:       EXTERNAL           LSAME, DLAMCH
                    232: *     ..
                    233: *     .. Statement Functions ..
                    234:       DOUBLE PRECISION   CABS1
                    235: *     ..
                    236: *     .. Statement Function definitions ..
                    237:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test the input parameters.
                    242: *
                    243:       INFO = 0
                    244:       UPPER = LSAME( UPLO, 'U' )
                    245:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    246:          INFO = -1
                    247:       ELSE IF( N.LT.0 ) THEN
                    248:          INFO = -2
                    249:       ELSE IF( NRHS.LT.0 ) THEN
                    250:          INFO = -3
                    251:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    252:          INFO = -8
                    253:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    254:          INFO = -10
                    255:       END IF
                    256:       IF( INFO.NE.0 ) THEN
                    257:          CALL XERBLA( 'ZSPRFS', -INFO )
                    258:          RETURN
                    259:       END IF
                    260: *
                    261: *     Quick return if possible
                    262: *
                    263:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    264:          DO 10 J = 1, NRHS
                    265:             FERR( J ) = ZERO
                    266:             BERR( J ) = ZERO
                    267:    10    CONTINUE
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    272: *
                    273:       NZ = N + 1
                    274:       EPS = DLAMCH( 'Epsilon' )
                    275:       SAFMIN = DLAMCH( 'Safe minimum' )
                    276:       SAFE1 = NZ*SAFMIN
                    277:       SAFE2 = SAFE1 / EPS
                    278: *
                    279: *     Do for each right hand side
                    280: *
                    281:       DO 140 J = 1, NRHS
                    282: *
                    283:          COUNT = 1
                    284:          LSTRES = THREE
                    285:    20    CONTINUE
                    286: *
                    287: *        Loop until stopping criterion is satisfied.
                    288: *
                    289: *        Compute residual R = B - A * X
                    290: *
                    291:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    292:          CALL ZSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 )
                    293: *
                    294: *        Compute componentwise relative backward error from formula
                    295: *
                    296: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    297: *
                    298: *        where abs(Z) is the componentwise absolute value of the matrix
                    299: *        or vector Z.  If the i-th component of the denominator is less
                    300: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    301: *        numerator and denominator before dividing.
                    302: *
                    303:          DO 30 I = 1, N
                    304:             RWORK( I ) = CABS1( B( I, J ) )
                    305:    30    CONTINUE
                    306: *
                    307: *        Compute abs(A)*abs(X) + abs(B).
                    308: *
                    309:          KK = 1
                    310:          IF( UPPER ) THEN
                    311:             DO 50 K = 1, N
                    312:                S = ZERO
                    313:                XK = CABS1( X( K, J ) )
                    314:                IK = KK
                    315:                DO 40 I = 1, K - 1
                    316:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    317:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    318:                   IK = IK + 1
                    319:    40          CONTINUE
                    320:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK+K-1 ) )*XK + S
                    321:                KK = KK + K
                    322:    50       CONTINUE
                    323:          ELSE
                    324:             DO 70 K = 1, N
                    325:                S = ZERO
                    326:                XK = CABS1( X( K, J ) )
                    327:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK ) )*XK
                    328:                IK = KK + 1
                    329:                DO 60 I = K + 1, N
                    330:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    331:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    332:                   IK = IK + 1
                    333:    60          CONTINUE
                    334:                RWORK( K ) = RWORK( K ) + S
                    335:                KK = KK + ( N-K+1 )
                    336:    70       CONTINUE
                    337:          END IF
                    338:          S = ZERO
                    339:          DO 80 I = 1, N
                    340:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    341:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    342:             ELSE
                    343:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    344:      $             ( RWORK( I )+SAFE1 ) )
                    345:             END IF
                    346:    80    CONTINUE
                    347:          BERR( J ) = S
                    348: *
                    349: *        Test stopping criterion. Continue iterating if
                    350: *           1) The residual BERR(J) is larger than machine epsilon, and
                    351: *           2) BERR(J) decreased by at least a factor of 2 during the
                    352: *              last iteration, and
                    353: *           3) At most ITMAX iterations tried.
                    354: *
                    355:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    356:      $       COUNT.LE.ITMAX ) THEN
                    357: *
                    358: *           Update solution and try again.
                    359: *
                    360:             CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    361:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    362:             LSTRES = BERR( J )
                    363:             COUNT = COUNT + 1
                    364:             GO TO 20
                    365:          END IF
                    366: *
                    367: *        Bound error from formula
                    368: *
                    369: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    370: *        norm( abs(inv(A))*
                    371: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    372: *
                    373: *        where
                    374: *          norm(Z) is the magnitude of the largest component of Z
                    375: *          inv(A) is the inverse of A
                    376: *          abs(Z) is the componentwise absolute value of the matrix or
                    377: *             vector Z
                    378: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    379: *          EPS is machine epsilon
                    380: *
                    381: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    382: *        is incremented by SAFE1 if the i-th component of
                    383: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    384: *
                    385: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    386: *           inv(A) * diag(W),
                    387: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    388: *
                    389:          DO 90 I = 1, N
                    390:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    391:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    392:             ELSE
                    393:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    394:      $                      SAFE1
                    395:             END IF
                    396:    90    CONTINUE
                    397: *
                    398:          KASE = 0
                    399:   100    CONTINUE
                    400:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    401:          IF( KASE.NE.0 ) THEN
                    402:             IF( KASE.EQ.1 ) THEN
                    403: *
1.8       bertrand  404: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  405: *
                    406:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    407:                DO 110 I = 1, N
                    408:                   WORK( I ) = RWORK( I )*WORK( I )
                    409:   110          CONTINUE
                    410:             ELSE IF( KASE.EQ.2 ) THEN
                    411: *
                    412: *              Multiply by inv(A)*diag(W).
                    413: *
                    414:                DO 120 I = 1, N
                    415:                   WORK( I ) = RWORK( I )*WORK( I )
                    416:   120          CONTINUE
                    417:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    418:             END IF
                    419:             GO TO 100
                    420:          END IF
                    421: *
                    422: *        Normalize error.
                    423: *
                    424:          LSTRES = ZERO
                    425:          DO 130 I = 1, N
                    426:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    427:   130    CONTINUE
                    428:          IF( LSTRES.NE.ZERO )
                    429:      $      FERR( J ) = FERR( J ) / LSTRES
                    430: *
                    431:   140 CONTINUE
                    432: *
                    433:       RETURN
                    434: *
                    435: *     End of ZSPRFS
                    436: *
                    437:       END

CVSweb interface <joel.bertrand@systella.fr>