File:  [local] / rpl / lapack / lapack / zspr.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:29:01 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INCX, N
   11:       COMPLEX*16         ALPHA
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         AP( * ), X( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSPR    performs the symmetric rank 1 operation
   21: *
   22: *     A := alpha*x*conjg( x' ) + A,
   23: *
   24: *  where alpha is a complex scalar, x is an n element vector and A is an
   25: *  n by n symmetric matrix, supplied in packed form.
   26: *
   27: *  Arguments
   28: *  ==========
   29: *
   30: *  UPLO     (input) CHARACTER*1
   31: *           On entry, UPLO specifies whether the upper or lower
   32: *           triangular part of the matrix A is supplied in the packed
   33: *           array AP as follows:
   34: *
   35: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   36: *                                  supplied in AP.
   37: *
   38: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   39: *                                  supplied in AP.
   40: *
   41: *           Unchanged on exit.
   42: *
   43: *  N        (input) INTEGER
   44: *           On entry, N specifies the order of the matrix A.
   45: *           N must be at least zero.
   46: *           Unchanged on exit.
   47: *
   48: *  ALPHA    (input) COMPLEX*16
   49: *           On entry, ALPHA specifies the scalar alpha.
   50: *           Unchanged on exit.
   51: *
   52: *  X        (input) COMPLEX*16 array, dimension at least
   53: *           ( 1 + ( N - 1 )*abs( INCX ) ).
   54: *           Before entry, the incremented array X must contain the N-
   55: *           element vector x.
   56: *           Unchanged on exit.
   57: *
   58: *  INCX     (input) INTEGER
   59: *           On entry, INCX specifies the increment for the elements of
   60: *           X. INCX must not be zero.
   61: *           Unchanged on exit.
   62: *
   63: *  AP       (input/output) COMPLEX*16 array, dimension at least
   64: *           ( ( N*( N + 1 ) )/2 ).
   65: *           Before entry, with  UPLO = 'U' or 'u', the array AP must
   66: *           contain the upper triangular part of the symmetric matrix
   67: *           packed sequentially, column by column, so that AP( 1 )
   68: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   69: *           and a( 2, 2 ) respectively, and so on. On exit, the array
   70: *           AP is overwritten by the upper triangular part of the
   71: *           updated matrix.
   72: *           Before entry, with UPLO = 'L' or 'l', the array AP must
   73: *           contain the lower triangular part of the symmetric matrix
   74: *           packed sequentially, column by column, so that AP( 1 )
   75: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   76: *           and a( 3, 1 ) respectively, and so on. On exit, the array
   77: *           AP is overwritten by the lower triangular part of the
   78: *           updated matrix.
   79: *           Note that the imaginary parts of the diagonal elements need
   80: *           not be set, they are assumed to be zero, and on exit they
   81: *           are set to zero.
   82: *
   83: * =====================================================================
   84: *
   85: *     .. Parameters ..
   86:       COMPLEX*16         ZERO
   87:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
   88: *     ..
   89: *     .. Local Scalars ..
   90:       INTEGER            I, INFO, IX, J, JX, K, KK, KX
   91:       COMPLEX*16         TEMP
   92: *     ..
   93: *     .. External Functions ..
   94:       LOGICAL            LSAME
   95:       EXTERNAL           LSAME
   96: *     ..
   97: *     .. External Subroutines ..
   98:       EXTERNAL           XERBLA
   99: *     ..
  100: *     .. Executable Statements ..
  101: *
  102: *     Test the input parameters.
  103: *
  104:       INFO = 0
  105:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  106:          INFO = 1
  107:       ELSE IF( N.LT.0 ) THEN
  108:          INFO = 2
  109:       ELSE IF( INCX.EQ.0 ) THEN
  110:          INFO = 5
  111:       END IF
  112:       IF( INFO.NE.0 ) THEN
  113:          CALL XERBLA( 'ZSPR  ', INFO )
  114:          RETURN
  115:       END IF
  116: *
  117: *     Quick return if possible.
  118: *
  119:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  120:      $   RETURN
  121: *
  122: *     Set the start point in X if the increment is not unity.
  123: *
  124:       IF( INCX.LE.0 ) THEN
  125:          KX = 1 - ( N-1 )*INCX
  126:       ELSE IF( INCX.NE.1 ) THEN
  127:          KX = 1
  128:       END IF
  129: *
  130: *     Start the operations. In this version the elements of the array AP
  131: *     are accessed sequentially with one pass through AP.
  132: *
  133:       KK = 1
  134:       IF( LSAME( UPLO, 'U' ) ) THEN
  135: *
  136: *        Form  A  when upper triangle is stored in AP.
  137: *
  138:          IF( INCX.EQ.1 ) THEN
  139:             DO 20 J = 1, N
  140:                IF( X( J ).NE.ZERO ) THEN
  141:                   TEMP = ALPHA*X( J )
  142:                   K = KK
  143:                   DO 10 I = 1, J - 1
  144:                      AP( K ) = AP( K ) + X( I )*TEMP
  145:                      K = K + 1
  146:    10             CONTINUE
  147:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
  148:                ELSE
  149:                   AP( KK+J-1 ) = AP( KK+J-1 )
  150:                END IF
  151:                KK = KK + J
  152:    20       CONTINUE
  153:          ELSE
  154:             JX = KX
  155:             DO 40 J = 1, N
  156:                IF( X( JX ).NE.ZERO ) THEN
  157:                   TEMP = ALPHA*X( JX )
  158:                   IX = KX
  159:                   DO 30 K = KK, KK + J - 2
  160:                      AP( K ) = AP( K ) + X( IX )*TEMP
  161:                      IX = IX + INCX
  162:    30             CONTINUE
  163:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
  164:                ELSE
  165:                   AP( KK+J-1 ) = AP( KK+J-1 )
  166:                END IF
  167:                JX = JX + INCX
  168:                KK = KK + J
  169:    40       CONTINUE
  170:          END IF
  171:       ELSE
  172: *
  173: *        Form  A  when lower triangle is stored in AP.
  174: *
  175:          IF( INCX.EQ.1 ) THEN
  176:             DO 60 J = 1, N
  177:                IF( X( J ).NE.ZERO ) THEN
  178:                   TEMP = ALPHA*X( J )
  179:                   AP( KK ) = AP( KK ) + TEMP*X( J )
  180:                   K = KK + 1
  181:                   DO 50 I = J + 1, N
  182:                      AP( K ) = AP( K ) + X( I )*TEMP
  183:                      K = K + 1
  184:    50             CONTINUE
  185:                ELSE
  186:                   AP( KK ) = AP( KK )
  187:                END IF
  188:                KK = KK + N - J + 1
  189:    60       CONTINUE
  190:          ELSE
  191:             JX = KX
  192:             DO 80 J = 1, N
  193:                IF( X( JX ).NE.ZERO ) THEN
  194:                   TEMP = ALPHA*X( JX )
  195:                   AP( KK ) = AP( KK ) + TEMP*X( JX )
  196:                   IX = JX
  197:                   DO 70 K = KK + 1, KK + N - J
  198:                      IX = IX + INCX
  199:                      AP( K ) = AP( K ) + X( IX )*TEMP
  200:    70             CONTINUE
  201:                ELSE
  202:                   AP( KK ) = AP( KK )
  203:                END IF
  204:                JX = JX + INCX
  205:                KK = KK + N - J + 1
  206:    80       CONTINUE
  207:          END IF
  208:       END IF
  209: *
  210:       RETURN
  211: *
  212: *     End of ZSPR
  213: *
  214:       END

CVSweb interface <joel.bertrand@systella.fr>