File:  [local] / rpl / lapack / lapack / zspr.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:37 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSPR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INCX, N
   26: *       COMPLEX*16         ALPHA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         AP( * ), X( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSPR    performs the symmetric rank 1 operation
   39: *>
   40: *>    A := alpha*x*x**H + A,
   41: *>
   42: *> where alpha is a complex scalar, x is an n element vector and A is an
   43: *> n by n symmetric matrix, supplied in packed form.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>           On entry, UPLO specifies whether the upper or lower
   53: *>           triangular part of the matrix A is supplied in the packed
   54: *>           array AP as follows:
   55: *>
   56: *>              UPLO = 'U' or 'u'   The upper triangular part of A is
   57: *>                                  supplied in AP.
   58: *>
   59: *>              UPLO = 'L' or 'l'   The lower triangular part of A is
   60: *>                                  supplied in AP.
   61: *>
   62: *>           Unchanged on exit.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>           On entry, N specifies the order of the matrix A.
   69: *>           N must be at least zero.
   70: *>           Unchanged on exit.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ALPHA
   74: *> \verbatim
   75: *>          ALPHA is COMPLEX*16
   76: *>           On entry, ALPHA specifies the scalar alpha.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] X
   81: *> \verbatim
   82: *>          X is COMPLEX*16 array, dimension at least
   83: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
   84: *>           Before entry, the incremented array X must contain the N-
   85: *>           element vector x.
   86: *>           Unchanged on exit.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCX
   90: *> \verbatim
   91: *>          INCX is INTEGER
   92: *>           On entry, INCX specifies the increment for the elements of
   93: *>           X. INCX must not be zero.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] AP
   98: *> \verbatim
   99: *>          AP is COMPLEX*16 array, dimension at least
  100: *>           ( ( N*( N + 1 ) )/2 ).
  101: *>           Before entry, with  UPLO = 'U' or 'u', the array AP must
  102: *>           contain the upper triangular part of the symmetric matrix
  103: *>           packed sequentially, column by column, so that AP( 1 )
  104: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  105: *>           and a( 2, 2 ) respectively, and so on. On exit, the array
  106: *>           AP is overwritten by the upper triangular part of the
  107: *>           updated matrix.
  108: *>           Before entry, with UPLO = 'L' or 'l', the array AP must
  109: *>           contain the lower triangular part of the symmetric matrix
  110: *>           packed sequentially, column by column, so that AP( 1 )
  111: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  112: *>           and a( 3, 1 ) respectively, and so on. On exit, the array
  113: *>           AP is overwritten by the lower triangular part of the
  114: *>           updated matrix.
  115: *>           Note that the imaginary parts of the diagonal elements need
  116: *>           not be set, they are assumed to be zero, and on exit they
  117: *>           are set to zero.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee
  124: *> \author Univ. of California Berkeley
  125: *> \author Univ. of Colorado Denver
  126: *> \author NAG Ltd.
  127: *
  128: *> \ingroup complex16OTHERauxiliary
  129: *
  130: *  =====================================================================
  131:       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
  132: *
  133: *  -- LAPACK auxiliary routine --
  134: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  135: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136: *
  137: *     .. Scalar Arguments ..
  138:       CHARACTER          UPLO
  139:       INTEGER            INCX, N
  140:       COMPLEX*16         ALPHA
  141: *     ..
  142: *     .. Array Arguments ..
  143:       COMPLEX*16         AP( * ), X( * )
  144: *     ..
  145: *
  146: * =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       COMPLEX*16         ZERO
  150:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       INTEGER            I, INFO, IX, J, JX, K, KK, KX
  154:       COMPLEX*16         TEMP
  155: *     ..
  156: *     .. External Functions ..
  157:       LOGICAL            LSAME
  158:       EXTERNAL           LSAME
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           XERBLA
  162: *     ..
  163: *     .. Executable Statements ..
  164: *
  165: *     Test the input parameters.
  166: *
  167:       INFO = 0
  168:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  169:          INFO = 1
  170:       ELSE IF( N.LT.0 ) THEN
  171:          INFO = 2
  172:       ELSE IF( INCX.EQ.0 ) THEN
  173:          INFO = 5
  174:       END IF
  175:       IF( INFO.NE.0 ) THEN
  176:          CALL XERBLA( 'ZSPR  ', INFO )
  177:          RETURN
  178:       END IF
  179: *
  180: *     Quick return if possible.
  181: *
  182:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  183:      $   RETURN
  184: *
  185: *     Set the start point in X if the increment is not unity.
  186: *
  187:       IF( INCX.LE.0 ) THEN
  188:          KX = 1 - ( N-1 )*INCX
  189:       ELSE IF( INCX.NE.1 ) THEN
  190:          KX = 1
  191:       END IF
  192: *
  193: *     Start the operations. In this version the elements of the array AP
  194: *     are accessed sequentially with one pass through AP.
  195: *
  196:       KK = 1
  197:       IF( LSAME( UPLO, 'U' ) ) THEN
  198: *
  199: *        Form  A  when upper triangle is stored in AP.
  200: *
  201:          IF( INCX.EQ.1 ) THEN
  202:             DO 20 J = 1, N
  203:                IF( X( J ).NE.ZERO ) THEN
  204:                   TEMP = ALPHA*X( J )
  205:                   K = KK
  206:                   DO 10 I = 1, J - 1
  207:                      AP( K ) = AP( K ) + X( I )*TEMP
  208:                      K = K + 1
  209:    10             CONTINUE
  210:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
  211:                ELSE
  212:                   AP( KK+J-1 ) = AP( KK+J-1 )
  213:                END IF
  214:                KK = KK + J
  215:    20       CONTINUE
  216:          ELSE
  217:             JX = KX
  218:             DO 40 J = 1, N
  219:                IF( X( JX ).NE.ZERO ) THEN
  220:                   TEMP = ALPHA*X( JX )
  221:                   IX = KX
  222:                   DO 30 K = KK, KK + J - 2
  223:                      AP( K ) = AP( K ) + X( IX )*TEMP
  224:                      IX = IX + INCX
  225:    30             CONTINUE
  226:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
  227:                ELSE
  228:                   AP( KK+J-1 ) = AP( KK+J-1 )
  229:                END IF
  230:                JX = JX + INCX
  231:                KK = KK + J
  232:    40       CONTINUE
  233:          END IF
  234:       ELSE
  235: *
  236: *        Form  A  when lower triangle is stored in AP.
  237: *
  238:          IF( INCX.EQ.1 ) THEN
  239:             DO 60 J = 1, N
  240:                IF( X( J ).NE.ZERO ) THEN
  241:                   TEMP = ALPHA*X( J )
  242:                   AP( KK ) = AP( KK ) + TEMP*X( J )
  243:                   K = KK + 1
  244:                   DO 50 I = J + 1, N
  245:                      AP( K ) = AP( K ) + X( I )*TEMP
  246:                      K = K + 1
  247:    50             CONTINUE
  248:                ELSE
  249:                   AP( KK ) = AP( KK )
  250:                END IF
  251:                KK = KK + N - J + 1
  252:    60       CONTINUE
  253:          ELSE
  254:             JX = KX
  255:             DO 80 J = 1, N
  256:                IF( X( JX ).NE.ZERO ) THEN
  257:                   TEMP = ALPHA*X( JX )
  258:                   AP( KK ) = AP( KK ) + TEMP*X( JX )
  259:                   IX = JX
  260:                   DO 70 K = KK + 1, KK + N - J
  261:                      IX = IX + INCX
  262:                      AP( K ) = AP( K ) + X( IX )*TEMP
  263:    70             CONTINUE
  264:                ELSE
  265:                   AP( KK ) = AP( KK )
  266:                END IF
  267:                JX = JX + INCX
  268:                KK = KK + N - J + 1
  269:    80       CONTINUE
  270:          END IF
  271:       END IF
  272: *
  273:       RETURN
  274: *
  275: *     End of ZSPR
  276: *
  277:       END

CVSweb interface <joel.bertrand@systella.fr>