File:  [local] / rpl / lapack / lapack / zspr.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:56 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZSPR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSPR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INCX, N
   26: *       COMPLEX*16         ALPHA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         AP( * ), X( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSPR    performs the symmetric rank 1 operation
   39: *>
   40: *>    A := alpha*x*x**H + A,
   41: *>
   42: *> where alpha is a complex scalar, x is an n element vector and A is an
   43: *> n by n symmetric matrix, supplied in packed form.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>           On entry, UPLO specifies whether the upper or lower
   53: *>           triangular part of the matrix A is supplied in the packed
   54: *>           array AP as follows:
   55: *>
   56: *>              UPLO = 'U' or 'u'   The upper triangular part of A is
   57: *>                                  supplied in AP.
   58: *>
   59: *>              UPLO = 'L' or 'l'   The lower triangular part of A is
   60: *>                                  supplied in AP.
   61: *>
   62: *>           Unchanged on exit.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>           On entry, N specifies the order of the matrix A.
   69: *>           N must be at least zero.
   70: *>           Unchanged on exit.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ALPHA
   74: *> \verbatim
   75: *>          ALPHA is COMPLEX*16
   76: *>           On entry, ALPHA specifies the scalar alpha.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] X
   81: *> \verbatim
   82: *>          X is COMPLEX*16 array, dimension at least
   83: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
   84: *>           Before entry, the incremented array X must contain the N-
   85: *>           element vector x.
   86: *>           Unchanged on exit.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCX
   90: *> \verbatim
   91: *>          INCX is INTEGER
   92: *>           On entry, INCX specifies the increment for the elements of
   93: *>           X. INCX must not be zero.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] AP
   98: *> \verbatim
   99: *>          AP is COMPLEX*16 array, dimension at least
  100: *>           ( ( N*( N + 1 ) )/2 ).
  101: *>           Before entry, with  UPLO = 'U' or 'u', the array AP must
  102: *>           contain the upper triangular part of the symmetric matrix
  103: *>           packed sequentially, column by column, so that AP( 1 )
  104: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  105: *>           and a( 2, 2 ) respectively, and so on. On exit, the array
  106: *>           AP is overwritten by the upper triangular part of the
  107: *>           updated matrix.
  108: *>           Before entry, with UPLO = 'L' or 'l', the array AP must
  109: *>           contain the lower triangular part of the symmetric matrix
  110: *>           packed sequentially, column by column, so that AP( 1 )
  111: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  112: *>           and a( 3, 1 ) respectively, and so on. On exit, the array
  113: *>           AP is overwritten by the lower triangular part of the
  114: *>           updated matrix.
  115: *>           Note that the imaginary parts of the diagonal elements need
  116: *>           not be set, they are assumed to be zero, and on exit they
  117: *>           are set to zero.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee 
  124: *> \author Univ. of California Berkeley 
  125: *> \author Univ. of Colorado Denver 
  126: *> \author NAG Ltd. 
  127: *
  128: *> \date November 2011
  129: *
  130: *> \ingroup complex16OTHERauxiliary
  131: *
  132: *  =====================================================================
  133:       SUBROUTINE ZSPR( UPLO, N, ALPHA, X, INCX, AP )
  134: *
  135: *  -- LAPACK auxiliary routine (version 3.4.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     November 2011
  139: *
  140: *     .. Scalar Arguments ..
  141:       CHARACTER          UPLO
  142:       INTEGER            INCX, N
  143:       COMPLEX*16         ALPHA
  144: *     ..
  145: *     .. Array Arguments ..
  146:       COMPLEX*16         AP( * ), X( * )
  147: *     ..
  148: *
  149: * =====================================================================
  150: *
  151: *     .. Parameters ..
  152:       COMPLEX*16         ZERO
  153:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  154: *     ..
  155: *     .. Local Scalars ..
  156:       INTEGER            I, INFO, IX, J, JX, K, KK, KX
  157:       COMPLEX*16         TEMP
  158: *     ..
  159: *     .. External Functions ..
  160:       LOGICAL            LSAME
  161:       EXTERNAL           LSAME
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           XERBLA
  165: *     ..
  166: *     .. Executable Statements ..
  167: *
  168: *     Test the input parameters.
  169: *
  170:       INFO = 0
  171:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172:          INFO = 1
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = 2
  175:       ELSE IF( INCX.EQ.0 ) THEN
  176:          INFO = 5
  177:       END IF
  178:       IF( INFO.NE.0 ) THEN
  179:          CALL XERBLA( 'ZSPR  ', INFO )
  180:          RETURN
  181:       END IF
  182: *
  183: *     Quick return if possible.
  184: *
  185:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  186:      $   RETURN
  187: *
  188: *     Set the start point in X if the increment is not unity.
  189: *
  190:       IF( INCX.LE.0 ) THEN
  191:          KX = 1 - ( N-1 )*INCX
  192:       ELSE IF( INCX.NE.1 ) THEN
  193:          KX = 1
  194:       END IF
  195: *
  196: *     Start the operations. In this version the elements of the array AP
  197: *     are accessed sequentially with one pass through AP.
  198: *
  199:       KK = 1
  200:       IF( LSAME( UPLO, 'U' ) ) THEN
  201: *
  202: *        Form  A  when upper triangle is stored in AP.
  203: *
  204:          IF( INCX.EQ.1 ) THEN
  205:             DO 20 J = 1, N
  206:                IF( X( J ).NE.ZERO ) THEN
  207:                   TEMP = ALPHA*X( J )
  208:                   K = KK
  209:                   DO 10 I = 1, J - 1
  210:                      AP( K ) = AP( K ) + X( I )*TEMP
  211:                      K = K + 1
  212:    10             CONTINUE
  213:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
  214:                ELSE
  215:                   AP( KK+J-1 ) = AP( KK+J-1 )
  216:                END IF
  217:                KK = KK + J
  218:    20       CONTINUE
  219:          ELSE
  220:             JX = KX
  221:             DO 40 J = 1, N
  222:                IF( X( JX ).NE.ZERO ) THEN
  223:                   TEMP = ALPHA*X( JX )
  224:                   IX = KX
  225:                   DO 30 K = KK, KK + J - 2
  226:                      AP( K ) = AP( K ) + X( IX )*TEMP
  227:                      IX = IX + INCX
  228:    30             CONTINUE
  229:                   AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
  230:                ELSE
  231:                   AP( KK+J-1 ) = AP( KK+J-1 )
  232:                END IF
  233:                JX = JX + INCX
  234:                KK = KK + J
  235:    40       CONTINUE
  236:          END IF
  237:       ELSE
  238: *
  239: *        Form  A  when lower triangle is stored in AP.
  240: *
  241:          IF( INCX.EQ.1 ) THEN
  242:             DO 60 J = 1, N
  243:                IF( X( J ).NE.ZERO ) THEN
  244:                   TEMP = ALPHA*X( J )
  245:                   AP( KK ) = AP( KK ) + TEMP*X( J )
  246:                   K = KK + 1
  247:                   DO 50 I = J + 1, N
  248:                      AP( K ) = AP( K ) + X( I )*TEMP
  249:                      K = K + 1
  250:    50             CONTINUE
  251:                ELSE
  252:                   AP( KK ) = AP( KK )
  253:                END IF
  254:                KK = KK + N - J + 1
  255:    60       CONTINUE
  256:          ELSE
  257:             JX = KX
  258:             DO 80 J = 1, N
  259:                IF( X( JX ).NE.ZERO ) THEN
  260:                   TEMP = ALPHA*X( JX )
  261:                   AP( KK ) = AP( KK ) + TEMP*X( JX )
  262:                   IX = JX
  263:                   DO 70 K = KK + 1, KK + N - J
  264:                      IX = IX + INCX
  265:                      AP( K ) = AP( K ) + X( IX )*TEMP
  266:    70             CONTINUE
  267:                ELSE
  268:                   AP( KK ) = AP( KK )
  269:                END IF
  270:                JX = JX + INCX
  271:                KK = KK + N - J + 1
  272:    80       CONTINUE
  273:          END IF
  274:       END IF
  275: *
  276:       RETURN
  277: *
  278: *     End of ZSPR
  279: *
  280:       END

CVSweb interface <joel.bertrand@systella.fr>