File:  [local] / rpl / lapack / lapack / zspmv.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:39 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZSPMV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSPMV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INCX, INCY, N
   26: *       COMPLEX*16         ALPHA, BETA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         AP( * ), X( * ), Y( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSPMV  performs the matrix-vector operation
   39: *>
   40: *>    y := alpha*A*x + beta*y,
   41: *>
   42: *> where alpha and beta are scalars, x and y are n element vectors and
   43: *> A is an n by n symmetric matrix, supplied in packed form.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>           On entry, UPLO specifies whether the upper or lower
   53: *>           triangular part of the matrix A is supplied in the packed
   54: *>           array AP as follows:
   55: *>
   56: *>              UPLO = 'U' or 'u'   The upper triangular part of A is
   57: *>                                  supplied in AP.
   58: *>
   59: *>              UPLO = 'L' or 'l'   The lower triangular part of A is
   60: *>                                  supplied in AP.
   61: *>
   62: *>           Unchanged on exit.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>           On entry, N specifies the order of the matrix A.
   69: *>           N must be at least zero.
   70: *>           Unchanged on exit.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ALPHA
   74: *> \verbatim
   75: *>          ALPHA is COMPLEX*16
   76: *>           On entry, ALPHA specifies the scalar alpha.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] AP
   81: *> \verbatim
   82: *>          AP is COMPLEX*16 array, dimension at least
   83: *>           ( ( N*( N + 1 ) )/2 ).
   84: *>           Before entry, with UPLO = 'U' or 'u', the array AP must
   85: *>           contain the upper triangular part of the symmetric matrix
   86: *>           packed sequentially, column by column, so that AP( 1 )
   87: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   88: *>           and a( 2, 2 ) respectively, and so on.
   89: *>           Before entry, with UPLO = 'L' or 'l', the array AP must
   90: *>           contain the lower triangular part of the symmetric matrix
   91: *>           packed sequentially, column by column, so that AP( 1 )
   92: *>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   93: *>           and a( 3, 1 ) respectively, and so on.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] X
   98: *> \verbatim
   99: *>          X is COMPLEX*16 array, dimension at least
  100: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
  101: *>           Before entry, the incremented array X must contain the N-
  102: *>           element vector x.
  103: *>           Unchanged on exit.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] INCX
  107: *> \verbatim
  108: *>          INCX is INTEGER
  109: *>           On entry, INCX specifies the increment for the elements of
  110: *>           X. INCX must not be zero.
  111: *>           Unchanged on exit.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] BETA
  115: *> \verbatim
  116: *>          BETA is COMPLEX*16
  117: *>           On entry, BETA specifies the scalar beta. When BETA is
  118: *>           supplied as zero then Y need not be set on input.
  119: *>           Unchanged on exit.
  120: *> \endverbatim
  121: *>
  122: *> \param[in,out] Y
  123: *> \verbatim
  124: *>          Y is COMPLEX*16 array, dimension at least
  125: *>           ( 1 + ( N - 1 )*abs( INCY ) ).
  126: *>           Before entry, the incremented array Y must contain the n
  127: *>           element vector y. On exit, Y is overwritten by the updated
  128: *>           vector y.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] INCY
  132: *> \verbatim
  133: *>          INCY is INTEGER
  134: *>           On entry, INCY specifies the increment for the elements of
  135: *>           Y. INCY must not be zero.
  136: *>           Unchanged on exit.
  137: *> \endverbatim
  138: *
  139: *  Authors:
  140: *  ========
  141: *
  142: *> \author Univ. of Tennessee 
  143: *> \author Univ. of California Berkeley 
  144: *> \author Univ. of Colorado Denver 
  145: *> \author NAG Ltd. 
  146: *
  147: *> \date November 2011
  148: *
  149: *> \ingroup complex16OTHERauxiliary
  150: *
  151: *  =====================================================================
  152:       SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
  153: *
  154: *  -- LAPACK auxiliary routine (version 3.4.0) --
  155: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  156: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157: *     November 2011
  158: *
  159: *     .. Scalar Arguments ..
  160:       CHARACTER          UPLO
  161:       INTEGER            INCX, INCY, N
  162:       COMPLEX*16         ALPHA, BETA
  163: *     ..
  164: *     .. Array Arguments ..
  165:       COMPLEX*16         AP( * ), X( * ), Y( * )
  166: *     ..
  167: *
  168: * =====================================================================
  169: *
  170: *     .. Parameters ..
  171:       COMPLEX*16         ONE
  172:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  173:       COMPLEX*16         ZERO
  174:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  175: *     ..
  176: *     .. Local Scalars ..
  177:       INTEGER            I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
  178:       COMPLEX*16         TEMP1, TEMP2
  179: *     ..
  180: *     .. External Functions ..
  181:       LOGICAL            LSAME
  182:       EXTERNAL           LSAME
  183: *     ..
  184: *     .. External Subroutines ..
  185:       EXTERNAL           XERBLA
  186: *     ..
  187: *     .. Executable Statements ..
  188: *
  189: *     Test the input parameters.
  190: *
  191:       INFO = 0
  192:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  193:          INFO = 1
  194:       ELSE IF( N.LT.0 ) THEN
  195:          INFO = 2
  196:       ELSE IF( INCX.EQ.0 ) THEN
  197:          INFO = 6
  198:       ELSE IF( INCY.EQ.0 ) THEN
  199:          INFO = 9
  200:       END IF
  201:       IF( INFO.NE.0 ) THEN
  202:          CALL XERBLA( 'ZSPMV ', INFO )
  203:          RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible.
  207: *
  208:       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  209:      $   RETURN
  210: *
  211: *     Set up the start points in  X  and  Y.
  212: *
  213:       IF( INCX.GT.0 ) THEN
  214:          KX = 1
  215:       ELSE
  216:          KX = 1 - ( N-1 )*INCX
  217:       END IF
  218:       IF( INCY.GT.0 ) THEN
  219:          KY = 1
  220:       ELSE
  221:          KY = 1 - ( N-1 )*INCY
  222:       END IF
  223: *
  224: *     Start the operations. In this version the elements of the array AP
  225: *     are accessed sequentially with one pass through AP.
  226: *
  227: *     First form  y := beta*y.
  228: *
  229:       IF( BETA.NE.ONE ) THEN
  230:          IF( INCY.EQ.1 ) THEN
  231:             IF( BETA.EQ.ZERO ) THEN
  232:                DO 10 I = 1, N
  233:                   Y( I ) = ZERO
  234:    10          CONTINUE
  235:             ELSE
  236:                DO 20 I = 1, N
  237:                   Y( I ) = BETA*Y( I )
  238:    20          CONTINUE
  239:             END IF
  240:          ELSE
  241:             IY = KY
  242:             IF( BETA.EQ.ZERO ) THEN
  243:                DO 30 I = 1, N
  244:                   Y( IY ) = ZERO
  245:                   IY = IY + INCY
  246:    30          CONTINUE
  247:             ELSE
  248:                DO 40 I = 1, N
  249:                   Y( IY ) = BETA*Y( IY )
  250:                   IY = IY + INCY
  251:    40          CONTINUE
  252:             END IF
  253:          END IF
  254:       END IF
  255:       IF( ALPHA.EQ.ZERO )
  256:      $   RETURN
  257:       KK = 1
  258:       IF( LSAME( UPLO, 'U' ) ) THEN
  259: *
  260: *        Form  y  when AP contains the upper triangle.
  261: *
  262:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  263:             DO 60 J = 1, N
  264:                TEMP1 = ALPHA*X( J )
  265:                TEMP2 = ZERO
  266:                K = KK
  267:                DO 50 I = 1, J - 1
  268:                   Y( I ) = Y( I ) + TEMP1*AP( K )
  269:                   TEMP2 = TEMP2 + AP( K )*X( I )
  270:                   K = K + 1
  271:    50          CONTINUE
  272:                Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  273:                KK = KK + J
  274:    60       CONTINUE
  275:          ELSE
  276:             JX = KX
  277:             JY = KY
  278:             DO 80 J = 1, N
  279:                TEMP1 = ALPHA*X( JX )
  280:                TEMP2 = ZERO
  281:                IX = KX
  282:                IY = KY
  283:                DO 70 K = KK, KK + J - 2
  284:                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
  285:                   TEMP2 = TEMP2 + AP( K )*X( IX )
  286:                   IX = IX + INCX
  287:                   IY = IY + INCY
  288:    70          CONTINUE
  289:                Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  290:                JX = JX + INCX
  291:                JY = JY + INCY
  292:                KK = KK + J
  293:    80       CONTINUE
  294:          END IF
  295:       ELSE
  296: *
  297: *        Form  y  when AP contains the lower triangle.
  298: *
  299:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  300:             DO 100 J = 1, N
  301:                TEMP1 = ALPHA*X( J )
  302:                TEMP2 = ZERO
  303:                Y( J ) = Y( J ) + TEMP1*AP( KK )
  304:                K = KK + 1
  305:                DO 90 I = J + 1, N
  306:                   Y( I ) = Y( I ) + TEMP1*AP( K )
  307:                   TEMP2 = TEMP2 + AP( K )*X( I )
  308:                   K = K + 1
  309:    90          CONTINUE
  310:                Y( J ) = Y( J ) + ALPHA*TEMP2
  311:                KK = KK + ( N-J+1 )
  312:   100       CONTINUE
  313:          ELSE
  314:             JX = KX
  315:             JY = KY
  316:             DO 120 J = 1, N
  317:                TEMP1 = ALPHA*X( JX )
  318:                TEMP2 = ZERO
  319:                Y( JY ) = Y( JY ) + TEMP1*AP( KK )
  320:                IX = JX
  321:                IY = JY
  322:                DO 110 K = KK + 1, KK + N - J
  323:                   IX = IX + INCX
  324:                   IY = IY + INCY
  325:                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
  326:                   TEMP2 = TEMP2 + AP( K )*X( IX )
  327:   110          CONTINUE
  328:                Y( JY ) = Y( JY ) + ALPHA*TEMP2
  329:                JX = JX + INCX
  330:                JY = JY + INCY
  331:                KK = KK + ( N-J+1 )
  332:   120       CONTINUE
  333:          END IF
  334:       END IF
  335: *
  336:       RETURN
  337: *
  338: *     End of ZSPMV
  339: *
  340:       END

CVSweb interface <joel.bertrand@systella.fr>