File:  [local] / rpl / lapack / lapack / zspmv.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 4 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INCX, INCY, N
   11:       COMPLEX*16         ALPHA, BETA
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         AP( * ), X( * ), Y( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSPMV  performs the matrix-vector operation
   21: *
   22: *     y := alpha*A*x + beta*y,
   23: *
   24: *  where alpha and beta are scalars, x and y are n element vectors and
   25: *  A is an n by n symmetric matrix, supplied in packed form.
   26: *
   27: *  Arguments
   28: *  ==========
   29: *
   30: *  UPLO     (input) CHARACTER*1
   31: *           On entry, UPLO specifies whether the upper or lower
   32: *           triangular part of the matrix A is supplied in the packed
   33: *           array AP as follows:
   34: *
   35: *              UPLO = 'U' or 'u'   The upper triangular part of A is
   36: *                                  supplied in AP.
   37: *
   38: *              UPLO = 'L' or 'l'   The lower triangular part of A is
   39: *                                  supplied in AP.
   40: *
   41: *           Unchanged on exit.
   42: *
   43: *  N        (input) INTEGER
   44: *           On entry, N specifies the order of the matrix A.
   45: *           N must be at least zero.
   46: *           Unchanged on exit.
   47: *
   48: *  ALPHA    (input) COMPLEX*16
   49: *           On entry, ALPHA specifies the scalar alpha.
   50: *           Unchanged on exit.
   51: *
   52: *  AP       (input) COMPLEX*16 array, dimension at least
   53: *           ( ( N*( N + 1 ) )/2 ).
   54: *           Before entry, with UPLO = 'U' or 'u', the array AP must
   55: *           contain the upper triangular part of the symmetric matrix
   56: *           packed sequentially, column by column, so that AP( 1 )
   57: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
   58: *           and a( 2, 2 ) respectively, and so on.
   59: *           Before entry, with UPLO = 'L' or 'l', the array AP must
   60: *           contain the lower triangular part of the symmetric matrix
   61: *           packed sequentially, column by column, so that AP( 1 )
   62: *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
   63: *           and a( 3, 1 ) respectively, and so on.
   64: *           Unchanged on exit.
   65: *
   66: *  X        (input) COMPLEX*16 array, dimension at least
   67: *           ( 1 + ( N - 1 )*abs( INCX ) ).
   68: *           Before entry, the incremented array X must contain the N-
   69: *           element vector x.
   70: *           Unchanged on exit.
   71: *
   72: *  INCX     (input) INTEGER
   73: *           On entry, INCX specifies the increment for the elements of
   74: *           X. INCX must not be zero.
   75: *           Unchanged on exit.
   76: *
   77: *  BETA     (input) COMPLEX*16
   78: *           On entry, BETA specifies the scalar beta. When BETA is
   79: *           supplied as zero then Y need not be set on input.
   80: *           Unchanged on exit.
   81: *
   82: *  Y        (input/output) COMPLEX*16 array, dimension at least
   83: *           ( 1 + ( N - 1 )*abs( INCY ) ).
   84: *           Before entry, the incremented array Y must contain the n
   85: *           element vector y. On exit, Y is overwritten by the updated
   86: *           vector y.
   87: *
   88: *  INCY     (input) INTEGER
   89: *           On entry, INCY specifies the increment for the elements of
   90: *           Y. INCY must not be zero.
   91: *           Unchanged on exit.
   92: *
   93: * =====================================================================
   94: *
   95: *     .. Parameters ..
   96:       COMPLEX*16         ONE
   97:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   98:       COMPLEX*16         ZERO
   99:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  100: *     ..
  101: *     .. Local Scalars ..
  102:       INTEGER            I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
  103:       COMPLEX*16         TEMP1, TEMP2
  104: *     ..
  105: *     .. External Functions ..
  106:       LOGICAL            LSAME
  107:       EXTERNAL           LSAME
  108: *     ..
  109: *     .. External Subroutines ..
  110:       EXTERNAL           XERBLA
  111: *     ..
  112: *     .. Executable Statements ..
  113: *
  114: *     Test the input parameters.
  115: *
  116:       INFO = 0
  117:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  118:          INFO = 1
  119:       ELSE IF( N.LT.0 ) THEN
  120:          INFO = 2
  121:       ELSE IF( INCX.EQ.0 ) THEN
  122:          INFO = 6
  123:       ELSE IF( INCY.EQ.0 ) THEN
  124:          INFO = 9
  125:       END IF
  126:       IF( INFO.NE.0 ) THEN
  127:          CALL XERBLA( 'ZSPMV ', INFO )
  128:          RETURN
  129:       END IF
  130: *
  131: *     Quick return if possible.
  132: *
  133:       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  134:      $   RETURN
  135: *
  136: *     Set up the start points in  X  and  Y.
  137: *
  138:       IF( INCX.GT.0 ) THEN
  139:          KX = 1
  140:       ELSE
  141:          KX = 1 - ( N-1 )*INCX
  142:       END IF
  143:       IF( INCY.GT.0 ) THEN
  144:          KY = 1
  145:       ELSE
  146:          KY = 1 - ( N-1 )*INCY
  147:       END IF
  148: *
  149: *     Start the operations. In this version the elements of the array AP
  150: *     are accessed sequentially with one pass through AP.
  151: *
  152: *     First form  y := beta*y.
  153: *
  154:       IF( BETA.NE.ONE ) THEN
  155:          IF( INCY.EQ.1 ) THEN
  156:             IF( BETA.EQ.ZERO ) THEN
  157:                DO 10 I = 1, N
  158:                   Y( I ) = ZERO
  159:    10          CONTINUE
  160:             ELSE
  161:                DO 20 I = 1, N
  162:                   Y( I ) = BETA*Y( I )
  163:    20          CONTINUE
  164:             END IF
  165:          ELSE
  166:             IY = KY
  167:             IF( BETA.EQ.ZERO ) THEN
  168:                DO 30 I = 1, N
  169:                   Y( IY ) = ZERO
  170:                   IY = IY + INCY
  171:    30          CONTINUE
  172:             ELSE
  173:                DO 40 I = 1, N
  174:                   Y( IY ) = BETA*Y( IY )
  175:                   IY = IY + INCY
  176:    40          CONTINUE
  177:             END IF
  178:          END IF
  179:       END IF
  180:       IF( ALPHA.EQ.ZERO )
  181:      $   RETURN
  182:       KK = 1
  183:       IF( LSAME( UPLO, 'U' ) ) THEN
  184: *
  185: *        Form  y  when AP contains the upper triangle.
  186: *
  187:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  188:             DO 60 J = 1, N
  189:                TEMP1 = ALPHA*X( J )
  190:                TEMP2 = ZERO
  191:                K = KK
  192:                DO 50 I = 1, J - 1
  193:                   Y( I ) = Y( I ) + TEMP1*AP( K )
  194:                   TEMP2 = TEMP2 + AP( K )*X( I )
  195:                   K = K + 1
  196:    50          CONTINUE
  197:                Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  198:                KK = KK + J
  199:    60       CONTINUE
  200:          ELSE
  201:             JX = KX
  202:             JY = KY
  203:             DO 80 J = 1, N
  204:                TEMP1 = ALPHA*X( JX )
  205:                TEMP2 = ZERO
  206:                IX = KX
  207:                IY = KY
  208:                DO 70 K = KK, KK + J - 2
  209:                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
  210:                   TEMP2 = TEMP2 + AP( K )*X( IX )
  211:                   IX = IX + INCX
  212:                   IY = IY + INCY
  213:    70          CONTINUE
  214:                Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  215:                JX = JX + INCX
  216:                JY = JY + INCY
  217:                KK = KK + J
  218:    80       CONTINUE
  219:          END IF
  220:       ELSE
  221: *
  222: *        Form  y  when AP contains the lower triangle.
  223: *
  224:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  225:             DO 100 J = 1, N
  226:                TEMP1 = ALPHA*X( J )
  227:                TEMP2 = ZERO
  228:                Y( J ) = Y( J ) + TEMP1*AP( KK )
  229:                K = KK + 1
  230:                DO 90 I = J + 1, N
  231:                   Y( I ) = Y( I ) + TEMP1*AP( K )
  232:                   TEMP2 = TEMP2 + AP( K )*X( I )
  233:                   K = K + 1
  234:    90          CONTINUE
  235:                Y( J ) = Y( J ) + ALPHA*TEMP2
  236:                KK = KK + ( N-J+1 )
  237:   100       CONTINUE
  238:          ELSE
  239:             JX = KX
  240:             JY = KY
  241:             DO 120 J = 1, N
  242:                TEMP1 = ALPHA*X( JX )
  243:                TEMP2 = ZERO
  244:                Y( JY ) = Y( JY ) + TEMP1*AP( KK )
  245:                IX = JX
  246:                IY = JY
  247:                DO 110 K = KK + 1, KK + N - J
  248:                   IX = IX + INCX
  249:                   IY = IY + INCY
  250:                   Y( IY ) = Y( IY ) + TEMP1*AP( K )
  251:                   TEMP2 = TEMP2 + AP( K )*X( IX )
  252:   110          CONTINUE
  253:                Y( JY ) = Y( JY ) + ALPHA*TEMP2
  254:                JX = JX + INCX
  255:                JY = JY + INCY
  256:                KK = KK + ( N-J+1 )
  257:   120       CONTINUE
  258:          END IF
  259:       END IF
  260: *
  261:       RETURN
  262: *
  263: *     End of ZSPMV
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>