File:  [local] / rpl / lapack / lapack / zptts2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:36 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPTTS2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptts2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptts2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptts2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            IUPLO, LDB, N, NRHS
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   D( * )
   28: *       COMPLEX*16         B( LDB, * ), E( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZPTTS2 solves a tridiagonal system of the form
   38: *>    A * X = B
   39: *> using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF.
   40: *> D is a diagonal matrix specified in the vector D, U (or L) is a unit
   41: *> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
   42: *> the vector E, and X and B are N by NRHS matrices.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] IUPLO
   49: *> \verbatim
   50: *>          IUPLO is INTEGER
   51: *>          Specifies the form of the factorization and whether the
   52: *>          vector E is the superdiagonal of the upper bidiagonal factor
   53: *>          U or the subdiagonal of the lower bidiagonal factor L.
   54: *>          = 1:  A = U**H *D*U, E is the superdiagonal of U
   55: *>          = 0:  A = L*D*L**H, E is the subdiagonal of L
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the tridiagonal matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] NRHS
   65: *> \verbatim
   66: *>          NRHS is INTEGER
   67: *>          The number of right hand sides, i.e., the number of columns
   68: *>          of the matrix B.  NRHS >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] D
   72: *> \verbatim
   73: *>          D is DOUBLE PRECISION array, dimension (N)
   74: *>          The n diagonal elements of the diagonal matrix D from the
   75: *>          factorization A = U**H *D*U or A = L*D*L**H.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] E
   79: *> \verbatim
   80: *>          E is COMPLEX*16 array, dimension (N-1)
   81: *>          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
   82: *>          bidiagonal factor U from the factorization A = U**H*D*U.
   83: *>          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
   84: *>          bidiagonal factor L from the factorization A = L*D*L**H.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] B
   88: *> \verbatim
   89: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   90: *>          On entry, the right hand side vectors B for the system of
   91: *>          linear equations.
   92: *>          On exit, the solution vectors, X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *
  101: *  Authors:
  102: *  ========
  103: *
  104: *> \author Univ. of Tennessee
  105: *> \author Univ. of California Berkeley
  106: *> \author Univ. of Colorado Denver
  107: *> \author NAG Ltd.
  108: *
  109: *> \ingroup complex16PTcomputational
  110: *
  111: *  =====================================================================
  112:       SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
  113: *
  114: *  -- LAPACK computational routine --
  115: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  116: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117: *
  118: *     .. Scalar Arguments ..
  119:       INTEGER            IUPLO, LDB, N, NRHS
  120: *     ..
  121: *     .. Array Arguments ..
  122:       DOUBLE PRECISION   D( * )
  123:       COMPLEX*16         B( LDB, * ), E( * )
  124: *     ..
  125: *
  126: *  =====================================================================
  127: *
  128: *     .. Local Scalars ..
  129:       INTEGER            I, J
  130: *     ..
  131: *     .. External Subroutines ..
  132:       EXTERNAL           ZDSCAL
  133: *     ..
  134: *     .. Intrinsic Functions ..
  135:       INTRINSIC          DCONJG
  136: *     ..
  137: *     .. Executable Statements ..
  138: *
  139: *     Quick return if possible
  140: *
  141:       IF( N.LE.1 ) THEN
  142:          IF( N.EQ.1 )
  143:      $      CALL ZDSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
  144:          RETURN
  145:       END IF
  146: *
  147:       IF( IUPLO.EQ.1 ) THEN
  148: *
  149: *        Solve A * X = B using the factorization A = U**H *D*U,
  150: *        overwriting each right hand side vector with its solution.
  151: *
  152:          IF( NRHS.LE.2 ) THEN
  153:             J = 1
  154:    10       CONTINUE
  155: *
  156: *           Solve U**H * x = b.
  157: *
  158:             DO 20 I = 2, N
  159:                B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
  160:    20       CONTINUE
  161: *
  162: *           Solve D * U * x = b.
  163: *
  164:             DO 30 I = 1, N
  165:                B( I, J ) = B( I, J ) / D( I )
  166:    30       CONTINUE
  167:             DO 40 I = N - 1, 1, -1
  168:                B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
  169:    40       CONTINUE
  170:             IF( J.LT.NRHS ) THEN
  171:                J = J + 1
  172:                GO TO 10
  173:             END IF
  174:          ELSE
  175:             DO 70 J = 1, NRHS
  176: *
  177: *              Solve U**H * x = b.
  178: *
  179:                DO 50 I = 2, N
  180:                   B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
  181:    50          CONTINUE
  182: *
  183: *              Solve D * U * x = b.
  184: *
  185:                B( N, J ) = B( N, J ) / D( N )
  186:                DO 60 I = N - 1, 1, -1
  187:                   B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
  188:    60          CONTINUE
  189:    70       CONTINUE
  190:          END IF
  191:       ELSE
  192: *
  193: *        Solve A * X = B using the factorization A = L*D*L**H,
  194: *        overwriting each right hand side vector with its solution.
  195: *
  196:          IF( NRHS.LE.2 ) THEN
  197:             J = 1
  198:    80       CONTINUE
  199: *
  200: *           Solve L * x = b.
  201: *
  202:             DO 90 I = 2, N
  203:                B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
  204:    90       CONTINUE
  205: *
  206: *           Solve D * L**H * x = b.
  207: *
  208:             DO 100 I = 1, N
  209:                B( I, J ) = B( I, J ) / D( I )
  210:   100       CONTINUE
  211:             DO 110 I = N - 1, 1, -1
  212:                B( I, J ) = B( I, J ) - B( I+1, J )*DCONJG( E( I ) )
  213:   110       CONTINUE
  214:             IF( J.LT.NRHS ) THEN
  215:                J = J + 1
  216:                GO TO 80
  217:             END IF
  218:          ELSE
  219:             DO 140 J = 1, NRHS
  220: *
  221: *              Solve L * x = b.
  222: *
  223:                DO 120 I = 2, N
  224:                   B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
  225:   120          CONTINUE
  226: *
  227: *              Solve D * L**H * x = b.
  228: *
  229:                B( N, J ) = B( N, J ) / D( N )
  230:                DO 130 I = N - 1, 1, -1
  231:                   B( I, J ) = B( I, J ) / D( I ) -
  232:      $                        B( I+1, J )*DCONJG( E( I ) )
  233:   130          CONTINUE
  234:   140       CONTINUE
  235:          END IF
  236:       END IF
  237: *
  238:       RETURN
  239: *
  240: *     End of ZPTTS2
  241: *
  242:       END

CVSweb interface <joel.bertrand@systella.fr>