File:  [local] / rpl / lapack / lapack / zpttrf.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:14 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZPTTRF( N, D, E, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   D( * )
   13:       COMPLEX*16         E( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  ZPTTRF computes the L*D*L' factorization of a complex Hermitian
   20: *  positive definite tridiagonal matrix A.  The factorization may also
   21: *  be regarded as having the form A = U'*D*U.
   22: *
   23: *  Arguments
   24: *  =========
   25: *
   26: *  N       (input) INTEGER
   27: *          The order of the matrix A.  N >= 0.
   28: *
   29: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   30: *          On entry, the n diagonal elements of the tridiagonal matrix
   31: *          A.  On exit, the n diagonal elements of the diagonal matrix
   32: *          D from the L*D*L' factorization of A.
   33: *
   34: *  E       (input/output) COMPLEX*16 array, dimension (N-1)
   35: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
   36: *          matrix A.  On exit, the (n-1) subdiagonal elements of the
   37: *          unit bidiagonal factor L from the L*D*L' factorization of A.
   38: *          E can also be regarded as the superdiagonal of the unit
   39: *          bidiagonal factor U from the U'*D*U factorization of A.
   40: *
   41: *  INFO    (output) INTEGER
   42: *          = 0: successful exit
   43: *          < 0: if INFO = -k, the k-th argument had an illegal value
   44: *          > 0: if INFO = k, the leading minor of order k is not
   45: *               positive definite; if k < N, the factorization could not
   46: *               be completed, while if k = N, the factorization was
   47: *               completed, but D(N) <= 0.
   48: *
   49: *  =====================================================================
   50: *
   51: *     .. Parameters ..
   52:       DOUBLE PRECISION   ZERO
   53:       PARAMETER          ( ZERO = 0.0D+0 )
   54: *     ..
   55: *     .. Local Scalars ..
   56:       INTEGER            I, I4
   57:       DOUBLE PRECISION   EII, EIR, F, G
   58: *     ..
   59: *     .. External Subroutines ..
   60:       EXTERNAL           XERBLA
   61: *     ..
   62: *     .. Intrinsic Functions ..
   63:       INTRINSIC          DBLE, DCMPLX, DIMAG, MOD
   64: *     ..
   65: *     .. Executable Statements ..
   66: *
   67: *     Test the input parameters.
   68: *
   69:       INFO = 0
   70:       IF( N.LT.0 ) THEN
   71:          INFO = -1
   72:          CALL XERBLA( 'ZPTTRF', -INFO )
   73:          RETURN
   74:       END IF
   75: *
   76: *     Quick return if possible
   77: *
   78:       IF( N.EQ.0 )
   79:      $   RETURN
   80: *
   81: *     Compute the L*D*L' (or U'*D*U) factorization of A.
   82: *
   83:       I4 = MOD( N-1, 4 )
   84:       DO 10 I = 1, I4
   85:          IF( D( I ).LE.ZERO ) THEN
   86:             INFO = I
   87:             GO TO 30
   88:          END IF
   89:          EIR = DBLE( E( I ) )
   90:          EII = DIMAG( E( I ) )
   91:          F = EIR / D( I )
   92:          G = EII / D( I )
   93:          E( I ) = DCMPLX( F, G )
   94:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
   95:    10 CONTINUE
   96: *
   97:       DO 20 I = I4 + 1, N - 4, 4
   98: *
   99: *        Drop out of the loop if d(i) <= 0: the matrix is not positive
  100: *        definite.
  101: *
  102:          IF( D( I ).LE.ZERO ) THEN
  103:             INFO = I
  104:             GO TO 30
  105:          END IF
  106: *
  107: *        Solve for e(i) and d(i+1).
  108: *
  109:          EIR = DBLE( E( I ) )
  110:          EII = DIMAG( E( I ) )
  111:          F = EIR / D( I )
  112:          G = EII / D( I )
  113:          E( I ) = DCMPLX( F, G )
  114:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
  115: *
  116:          IF( D( I+1 ).LE.ZERO ) THEN
  117:             INFO = I + 1
  118:             GO TO 30
  119:          END IF
  120: *
  121: *        Solve for e(i+1) and d(i+2).
  122: *
  123:          EIR = DBLE( E( I+1 ) )
  124:          EII = DIMAG( E( I+1 ) )
  125:          F = EIR / D( I+1 )
  126:          G = EII / D( I+1 )
  127:          E( I+1 ) = DCMPLX( F, G )
  128:          D( I+2 ) = D( I+2 ) - F*EIR - G*EII
  129: *
  130:          IF( D( I+2 ).LE.ZERO ) THEN
  131:             INFO = I + 2
  132:             GO TO 30
  133:          END IF
  134: *
  135: *        Solve for e(i+2) and d(i+3).
  136: *
  137:          EIR = DBLE( E( I+2 ) )
  138:          EII = DIMAG( E( I+2 ) )
  139:          F = EIR / D( I+2 )
  140:          G = EII / D( I+2 )
  141:          E( I+2 ) = DCMPLX( F, G )
  142:          D( I+3 ) = D( I+3 ) - F*EIR - G*EII
  143: *
  144:          IF( D( I+3 ).LE.ZERO ) THEN
  145:             INFO = I + 3
  146:             GO TO 30
  147:          END IF
  148: *
  149: *        Solve for e(i+3) and d(i+4).
  150: *
  151:          EIR = DBLE( E( I+3 ) )
  152:          EII = DIMAG( E( I+3 ) )
  153:          F = EIR / D( I+3 )
  154:          G = EII / D( I+3 )
  155:          E( I+3 ) = DCMPLX( F, G )
  156:          D( I+4 ) = D( I+4 ) - F*EIR - G*EII
  157:    20 CONTINUE
  158: *
  159: *     Check d(n) for positive definiteness.
  160: *
  161:       IF( D( N ).LE.ZERO )
  162:      $   INFO = N
  163: *
  164:    30 CONTINUE
  165:       RETURN
  166: *
  167: *     End of ZPTTRF
  168: *
  169:       END

CVSweb interface <joel.bertrand@systella.fr>