File:  [local] / rpl / lapack / lapack / zpttrf.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:36 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPTTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPTTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpttrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpttrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpttrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPTTRF( N, D, E, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   D( * )
   28: *       COMPLEX*16         E( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZPTTRF computes the L*D*L**H factorization of a complex Hermitian
   38: *> positive definite tridiagonal matrix A.  The factorization may also
   39: *> be regarded as having the form A = U**H *D*U.
   40: *> \endverbatim
   41: *
   42: *  Arguments:
   43: *  ==========
   44: *
   45: *> \param[in] N
   46: *> \verbatim
   47: *>          N is INTEGER
   48: *>          The order of the matrix A.  N >= 0.
   49: *> \endverbatim
   50: *>
   51: *> \param[in,out] D
   52: *> \verbatim
   53: *>          D is DOUBLE PRECISION array, dimension (N)
   54: *>          On entry, the n diagonal elements of the tridiagonal matrix
   55: *>          A.  On exit, the n diagonal elements of the diagonal matrix
   56: *>          D from the L*D*L**H factorization of A.
   57: *> \endverbatim
   58: *>
   59: *> \param[in,out] E
   60: *> \verbatim
   61: *>          E is COMPLEX*16 array, dimension (N-1)
   62: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   63: *>          matrix A.  On exit, the (n-1) subdiagonal elements of the
   64: *>          unit bidiagonal factor L from the L*D*L**H factorization of A.
   65: *>          E can also be regarded as the superdiagonal of the unit
   66: *>          bidiagonal factor U from the U**H *D*U factorization of A.
   67: *> \endverbatim
   68: *>
   69: *> \param[out] INFO
   70: *> \verbatim
   71: *>          INFO is INTEGER
   72: *>          = 0: successful exit
   73: *>          < 0: if INFO = -k, the k-th argument had an illegal value
   74: *>          > 0: if INFO = k, the leading minor of order k is not
   75: *>               positive definite; if k < N, the factorization could not
   76: *>               be completed, while if k = N, the factorization was
   77: *>               completed, but D(N) <= 0.
   78: *> \endverbatim
   79: *
   80: *  Authors:
   81: *  ========
   82: *
   83: *> \author Univ. of Tennessee
   84: *> \author Univ. of California Berkeley
   85: *> \author Univ. of Colorado Denver
   86: *> \author NAG Ltd.
   87: *
   88: *> \ingroup complex16PTcomputational
   89: *
   90: *  =====================================================================
   91:       SUBROUTINE ZPTTRF( N, D, E, INFO )
   92: *
   93: *  -- LAPACK computational routine --
   94: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   95: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   96: *
   97: *     .. Scalar Arguments ..
   98:       INTEGER            INFO, N
   99: *     ..
  100: *     .. Array Arguments ..
  101:       DOUBLE PRECISION   D( * )
  102:       COMPLEX*16         E( * )
  103: *     ..
  104: *
  105: *  =====================================================================
  106: *
  107: *     .. Parameters ..
  108:       DOUBLE PRECISION   ZERO
  109:       PARAMETER          ( ZERO = 0.0D+0 )
  110: *     ..
  111: *     .. Local Scalars ..
  112:       INTEGER            I, I4
  113:       DOUBLE PRECISION   EII, EIR, F, G
  114: *     ..
  115: *     .. External Subroutines ..
  116:       EXTERNAL           XERBLA
  117: *     ..
  118: *     .. Intrinsic Functions ..
  119:       INTRINSIC          DBLE, DCMPLX, DIMAG, MOD
  120: *     ..
  121: *     .. Executable Statements ..
  122: *
  123: *     Test the input parameters.
  124: *
  125:       INFO = 0
  126:       IF( N.LT.0 ) THEN
  127:          INFO = -1
  128:          CALL XERBLA( 'ZPTTRF', -INFO )
  129:          RETURN
  130:       END IF
  131: *
  132: *     Quick return if possible
  133: *
  134:       IF( N.EQ.0 )
  135:      $   RETURN
  136: *
  137: *     Compute the L*D*L**H (or U**H *D*U) factorization of A.
  138: *
  139:       I4 = MOD( N-1, 4 )
  140:       DO 10 I = 1, I4
  141:          IF( D( I ).LE.ZERO ) THEN
  142:             INFO = I
  143:             GO TO 30
  144:          END IF
  145:          EIR = DBLE( E( I ) )
  146:          EII = DIMAG( E( I ) )
  147:          F = EIR / D( I )
  148:          G = EII / D( I )
  149:          E( I ) = DCMPLX( F, G )
  150:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
  151:    10 CONTINUE
  152: *
  153:       DO 20 I = I4 + 1, N - 4, 4
  154: *
  155: *        Drop out of the loop if d(i) <= 0: the matrix is not positive
  156: *        definite.
  157: *
  158:          IF( D( I ).LE.ZERO ) THEN
  159:             INFO = I
  160:             GO TO 30
  161:          END IF
  162: *
  163: *        Solve for e(i) and d(i+1).
  164: *
  165:          EIR = DBLE( E( I ) )
  166:          EII = DIMAG( E( I ) )
  167:          F = EIR / D( I )
  168:          G = EII / D( I )
  169:          E( I ) = DCMPLX( F, G )
  170:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
  171: *
  172:          IF( D( I+1 ).LE.ZERO ) THEN
  173:             INFO = I + 1
  174:             GO TO 30
  175:          END IF
  176: *
  177: *        Solve for e(i+1) and d(i+2).
  178: *
  179:          EIR = DBLE( E( I+1 ) )
  180:          EII = DIMAG( E( I+1 ) )
  181:          F = EIR / D( I+1 )
  182:          G = EII / D( I+1 )
  183:          E( I+1 ) = DCMPLX( F, G )
  184:          D( I+2 ) = D( I+2 ) - F*EIR - G*EII
  185: *
  186:          IF( D( I+2 ).LE.ZERO ) THEN
  187:             INFO = I + 2
  188:             GO TO 30
  189:          END IF
  190: *
  191: *        Solve for e(i+2) and d(i+3).
  192: *
  193:          EIR = DBLE( E( I+2 ) )
  194:          EII = DIMAG( E( I+2 ) )
  195:          F = EIR / D( I+2 )
  196:          G = EII / D( I+2 )
  197:          E( I+2 ) = DCMPLX( F, G )
  198:          D( I+3 ) = D( I+3 ) - F*EIR - G*EII
  199: *
  200:          IF( D( I+3 ).LE.ZERO ) THEN
  201:             INFO = I + 3
  202:             GO TO 30
  203:          END IF
  204: *
  205: *        Solve for e(i+3) and d(i+4).
  206: *
  207:          EIR = DBLE( E( I+3 ) )
  208:          EII = DIMAG( E( I+3 ) )
  209:          F = EIR / D( I+3 )
  210:          G = EII / D( I+3 )
  211:          E( I+3 ) = DCMPLX( F, G )
  212:          D( I+4 ) = D( I+4 ) - F*EIR - G*EII
  213:    20 CONTINUE
  214: *
  215: *     Check d(n) for positive definiteness.
  216: *
  217:       IF( D( N ).LE.ZERO )
  218:      $   INFO = N
  219: *
  220:    30 CONTINUE
  221:       RETURN
  222: *
  223: *     End of ZPTTRF
  224: *
  225:       END

CVSweb interface <joel.bertrand@systella.fr>