File:  [local] / rpl / lapack / lapack / zpttrf.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:42 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZPTTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPTTRF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpttrf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpttrf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpttrf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPTTRF( N, D, E, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   D( * )
   28: *       COMPLEX*16         E( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZPTTRF computes the L*D*L**H factorization of a complex Hermitian
   38: *> positive definite tridiagonal matrix A.  The factorization may also
   39: *> be regarded as having the form A = U**H *D*U.
   40: *> \endverbatim
   41: *
   42: *  Arguments:
   43: *  ==========
   44: *
   45: *> \param[in] N
   46: *> \verbatim
   47: *>          N is INTEGER
   48: *>          The order of the matrix A.  N >= 0.
   49: *> \endverbatim
   50: *>
   51: *> \param[in,out] D
   52: *> \verbatim
   53: *>          D is DOUBLE PRECISION array, dimension (N)
   54: *>          On entry, the n diagonal elements of the tridiagonal matrix
   55: *>          A.  On exit, the n diagonal elements of the diagonal matrix
   56: *>          D from the L*D*L**H factorization of A.
   57: *> \endverbatim
   58: *>
   59: *> \param[in,out] E
   60: *> \verbatim
   61: *>          E is COMPLEX*16 array, dimension (N-1)
   62: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   63: *>          matrix A.  On exit, the (n-1) subdiagonal elements of the
   64: *>          unit bidiagonal factor L from the L*D*L**H factorization of A.
   65: *>          E can also be regarded as the superdiagonal of the unit
   66: *>          bidiagonal factor U from the U**H *D*U factorization of A.
   67: *> \endverbatim
   68: *>
   69: *> \param[out] INFO
   70: *> \verbatim
   71: *>          INFO is INTEGER
   72: *>          = 0: successful exit
   73: *>          < 0: if INFO = -k, the k-th argument had an illegal value
   74: *>          > 0: if INFO = k, the leading minor of order k is not
   75: *>               positive definite; if k < N, the factorization could not
   76: *>               be completed, while if k = N, the factorization was
   77: *>               completed, but D(N) <= 0.
   78: *> \endverbatim
   79: *
   80: *  Authors:
   81: *  ========
   82: *
   83: *> \author Univ. of Tennessee 
   84: *> \author Univ. of California Berkeley 
   85: *> \author Univ. of Colorado Denver 
   86: *> \author NAG Ltd. 
   87: *
   88: *> \date September 2012
   89: *
   90: *> \ingroup complex16PTcomputational
   91: *
   92: *  =====================================================================
   93:       SUBROUTINE ZPTTRF( N, D, E, INFO )
   94: *
   95: *  -- LAPACK computational routine (version 3.4.2) --
   96: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   97: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   98: *     September 2012
   99: *
  100: *     .. Scalar Arguments ..
  101:       INTEGER            INFO, N
  102: *     ..
  103: *     .. Array Arguments ..
  104:       DOUBLE PRECISION   D( * )
  105:       COMPLEX*16         E( * )
  106: *     ..
  107: *
  108: *  =====================================================================
  109: *
  110: *     .. Parameters ..
  111:       DOUBLE PRECISION   ZERO
  112:       PARAMETER          ( ZERO = 0.0D+0 )
  113: *     ..
  114: *     .. Local Scalars ..
  115:       INTEGER            I, I4
  116:       DOUBLE PRECISION   EII, EIR, F, G
  117: *     ..
  118: *     .. External Subroutines ..
  119:       EXTERNAL           XERBLA
  120: *     ..
  121: *     .. Intrinsic Functions ..
  122:       INTRINSIC          DBLE, DCMPLX, DIMAG, MOD
  123: *     ..
  124: *     .. Executable Statements ..
  125: *
  126: *     Test the input parameters.
  127: *
  128:       INFO = 0
  129:       IF( N.LT.0 ) THEN
  130:          INFO = -1
  131:          CALL XERBLA( 'ZPTTRF', -INFO )
  132:          RETURN
  133:       END IF
  134: *
  135: *     Quick return if possible
  136: *
  137:       IF( N.EQ.0 )
  138:      $   RETURN
  139: *
  140: *     Compute the L*D*L**H (or U**H *D*U) factorization of A.
  141: *
  142:       I4 = MOD( N-1, 4 )
  143:       DO 10 I = 1, I4
  144:          IF( D( I ).LE.ZERO ) THEN
  145:             INFO = I
  146:             GO TO 30
  147:          END IF
  148:          EIR = DBLE( E( I ) )
  149:          EII = DIMAG( E( I ) )
  150:          F = EIR / D( I )
  151:          G = EII / D( I )
  152:          E( I ) = DCMPLX( F, G )
  153:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
  154:    10 CONTINUE
  155: *
  156:       DO 20 I = I4 + 1, N - 4, 4
  157: *
  158: *        Drop out of the loop if d(i) <= 0: the matrix is not positive
  159: *        definite.
  160: *
  161:          IF( D( I ).LE.ZERO ) THEN
  162:             INFO = I
  163:             GO TO 30
  164:          END IF
  165: *
  166: *        Solve for e(i) and d(i+1).
  167: *
  168:          EIR = DBLE( E( I ) )
  169:          EII = DIMAG( E( I ) )
  170:          F = EIR / D( I )
  171:          G = EII / D( I )
  172:          E( I ) = DCMPLX( F, G )
  173:          D( I+1 ) = D( I+1 ) - F*EIR - G*EII
  174: *
  175:          IF( D( I+1 ).LE.ZERO ) THEN
  176:             INFO = I + 1
  177:             GO TO 30
  178:          END IF
  179: *
  180: *        Solve for e(i+1) and d(i+2).
  181: *
  182:          EIR = DBLE( E( I+1 ) )
  183:          EII = DIMAG( E( I+1 ) )
  184:          F = EIR / D( I+1 )
  185:          G = EII / D( I+1 )
  186:          E( I+1 ) = DCMPLX( F, G )
  187:          D( I+2 ) = D( I+2 ) - F*EIR - G*EII
  188: *
  189:          IF( D( I+2 ).LE.ZERO ) THEN
  190:             INFO = I + 2
  191:             GO TO 30
  192:          END IF
  193: *
  194: *        Solve for e(i+2) and d(i+3).
  195: *
  196:          EIR = DBLE( E( I+2 ) )
  197:          EII = DIMAG( E( I+2 ) )
  198:          F = EIR / D( I+2 )
  199:          G = EII / D( I+2 )
  200:          E( I+2 ) = DCMPLX( F, G )
  201:          D( I+3 ) = D( I+3 ) - F*EIR - G*EII
  202: *
  203:          IF( D( I+3 ).LE.ZERO ) THEN
  204:             INFO = I + 3
  205:             GO TO 30
  206:          END IF
  207: *
  208: *        Solve for e(i+3) and d(i+4).
  209: *
  210:          EIR = DBLE( E( I+3 ) )
  211:          EII = DIMAG( E( I+3 ) )
  212:          F = EIR / D( I+3 )
  213:          G = EII / D( I+3 )
  214:          E( I+3 ) = DCMPLX( F, G )
  215:          D( I+4 ) = D( I+4 ) - F*EIR - G*EII
  216:    20 CONTINUE
  217: *
  218: *     Check d(n) for positive definiteness.
  219: *
  220:       IF( D( N ).LE.ZERO )
  221:      $   INFO = N
  222: *
  223:    30 CONTINUE
  224:       RETURN
  225: *
  226: *     End of ZPTTRF
  227: *
  228:       END

CVSweb interface <joel.bertrand@systella.fr>