Annotation of rpl/lapack/lapack/zptsvx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
                      2:      $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          FACT
                     11:       INTEGER            INFO, LDB, LDX, N, NRHS
                     12:       DOUBLE PRECISION   RCOND
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
                     16:      $                   RWORK( * )
                     17:       COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
                     18:      $                   X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZPTSVX uses the factorization A = L*D*L**H to compute the solution
                     25: *  to a complex system of linear equations A*X = B, where A is an
                     26: *  N-by-N Hermitian positive definite tridiagonal matrix and X and B
                     27: *  are N-by-NRHS matrices.
                     28: *
                     29: *  Error bounds on the solution and a condition estimate are also
                     30: *  provided.
                     31: *
                     32: *  Description
                     33: *  ===========
                     34: *
                     35: *  The following steps are performed:
                     36: *
                     37: *  1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L
                     38: *     is a unit lower bidiagonal matrix and D is diagonal.  The
                     39: *     factorization can also be regarded as having the form
                     40: *     A = U**H*D*U.
                     41: *
                     42: *  2. If the leading i-by-i principal minor is not positive definite,
                     43: *     then the routine returns with INFO = i. Otherwise, the factored
                     44: *     form of A is used to estimate the condition number of the matrix
                     45: *     A.  If the reciprocal of the condition number is less than machine
                     46: *     precision, INFO = N+1 is returned as a warning, but the routine
                     47: *     still goes on to solve for X and compute error bounds as
                     48: *     described below.
                     49: *
                     50: *  3. The system of equations is solved for X using the factored form
                     51: *     of A.
                     52: *
                     53: *  4. Iterative refinement is applied to improve the computed solution
                     54: *     matrix and calculate error bounds and backward error estimates
                     55: *     for it.
                     56: *
                     57: *  Arguments
                     58: *  =========
                     59: *
                     60: *  FACT    (input) CHARACTER*1
                     61: *          Specifies whether or not the factored form of the matrix
                     62: *          A is supplied on entry.
                     63: *          = 'F':  On entry, DF and EF contain the factored form of A.
                     64: *                  D, E, DF, and EF will not be modified.
                     65: *          = 'N':  The matrix A will be copied to DF and EF and
                     66: *                  factored.
                     67: *
                     68: *  N       (input) INTEGER
                     69: *          The order of the matrix A.  N >= 0.
                     70: *
                     71: *  NRHS    (input) INTEGER
                     72: *          The number of right hand sides, i.e., the number of columns
                     73: *          of the matrices B and X.  NRHS >= 0.
                     74: *
                     75: *  D       (input) DOUBLE PRECISION array, dimension (N)
                     76: *          The n diagonal elements of the tridiagonal matrix A.
                     77: *
                     78: *  E       (input) COMPLEX*16 array, dimension (N-1)
                     79: *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
                     80: *
                     81: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
                     82: *          If FACT = 'F', then DF is an input argument and on entry
                     83: *          contains the n diagonal elements of the diagonal matrix D
                     84: *          from the L*D*L**H factorization of A.
                     85: *          If FACT = 'N', then DF is an output argument and on exit
                     86: *          contains the n diagonal elements of the diagonal matrix D
                     87: *          from the L*D*L**H factorization of A.
                     88: *
                     89: *  EF      (input or output) COMPLEX*16 array, dimension (N-1)
                     90: *          If FACT = 'F', then EF is an input argument and on entry
                     91: *          contains the (n-1) subdiagonal elements of the unit
                     92: *          bidiagonal factor L from the L*D*L**H factorization of A.
                     93: *          If FACT = 'N', then EF is an output argument and on exit
                     94: *          contains the (n-1) subdiagonal elements of the unit
                     95: *          bidiagonal factor L from the L*D*L**H factorization of A.
                     96: *
                     97: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     98: *          The N-by-NRHS right hand side matrix B.
                     99: *
                    100: *  LDB     (input) INTEGER
                    101: *          The leading dimension of the array B.  LDB >= max(1,N).
                    102: *
                    103: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    104: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    105: *
                    106: *  LDX     (input) INTEGER
                    107: *          The leading dimension of the array X.  LDX >= max(1,N).
                    108: *
                    109: *  RCOND   (output) DOUBLE PRECISION
                    110: *          The reciprocal condition number of the matrix A.  If RCOND
                    111: *          is less than the machine precision (in particular, if
                    112: *          RCOND = 0), the matrix is singular to working precision.
                    113: *          This condition is indicated by a return code of INFO > 0.
                    114: *
                    115: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    116: *          The forward error bound for each solution vector
                    117: *          X(j) (the j-th column of the solution matrix X).
                    118: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    119: *          is an estimated upper bound for the magnitude of the largest
                    120: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    121: *          largest element in X(j).
                    122: *
                    123: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    124: *          The componentwise relative backward error of each solution
                    125: *          vector X(j) (i.e., the smallest relative change in any
                    126: *          element of A or B that makes X(j) an exact solution).
                    127: *
                    128: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
                    129: *
                    130: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    131: *
                    132: *  INFO    (output) INTEGER
                    133: *          = 0:  successful exit
                    134: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    135: *          > 0:  if INFO = i, and i is
                    136: *                <= N:  the leading minor of order i of A is
                    137: *                       not positive definite, so the factorization
                    138: *                       could not be completed, and the solution has not
                    139: *                       been computed. RCOND = 0 is returned.
                    140: *                = N+1: U is nonsingular, but RCOND is less than machine
                    141: *                       precision, meaning that the matrix is singular
                    142: *                       to working precision.  Nevertheless, the
                    143: *                       solution and error bounds are computed because
                    144: *                       there are a number of situations where the
                    145: *                       computed solution can be more accurate than the
                    146: *                       value of RCOND would suggest.
                    147: *
                    148: *  =====================================================================
                    149: *
                    150: *     .. Parameters ..
                    151:       DOUBLE PRECISION   ZERO
                    152:       PARAMETER          ( ZERO = 0.0D+0 )
                    153: *     ..
                    154: *     .. Local Scalars ..
                    155:       LOGICAL            NOFACT
                    156:       DOUBLE PRECISION   ANORM
                    157: *     ..
                    158: *     .. External Functions ..
                    159:       LOGICAL            LSAME
                    160:       DOUBLE PRECISION   DLAMCH, ZLANHT
                    161:       EXTERNAL           LSAME, DLAMCH, ZLANHT
                    162: *     ..
                    163: *     .. External Subroutines ..
                    164:       EXTERNAL           DCOPY, XERBLA, ZCOPY, ZLACPY, ZPTCON, ZPTRFS,
                    165:      $                   ZPTTRF, ZPTTRS
                    166: *     ..
                    167: *     .. Intrinsic Functions ..
                    168:       INTRINSIC          MAX
                    169: *     ..
                    170: *     .. Executable Statements ..
                    171: *
                    172: *     Test the input parameters.
                    173: *
                    174:       INFO = 0
                    175:       NOFACT = LSAME( FACT, 'N' )
                    176:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( N.LT.0 ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( NRHS.LT.0 ) THEN
                    181:          INFO = -3
                    182:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    183:          INFO = -9
                    184:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    185:          INFO = -11
                    186:       END IF
                    187:       IF( INFO.NE.0 ) THEN
                    188:          CALL XERBLA( 'ZPTSVX', -INFO )
                    189:          RETURN
                    190:       END IF
                    191: *
                    192:       IF( NOFACT ) THEN
                    193: *
                    194: *        Compute the L*D*L' (or U'*D*U) factorization of A.
                    195: *
                    196:          CALL DCOPY( N, D, 1, DF, 1 )
                    197:          IF( N.GT.1 )
                    198:      $      CALL ZCOPY( N-1, E, 1, EF, 1 )
                    199:          CALL ZPTTRF( N, DF, EF, INFO )
                    200: *
                    201: *        Return if INFO is non-zero.
                    202: *
                    203:          IF( INFO.GT.0 )THEN
                    204:             RCOND = ZERO
                    205:             RETURN
                    206:          END IF
                    207:       END IF
                    208: *
                    209: *     Compute the norm of the matrix A.
                    210: *
                    211:       ANORM = ZLANHT( '1', N, D, E )
                    212: *
                    213: *     Compute the reciprocal of the condition number of A.
                    214: *
                    215:       CALL ZPTCON( N, DF, EF, ANORM, RCOND, RWORK, INFO )
                    216: *
                    217: *     Compute the solution vectors X.
                    218: *
                    219:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    220:       CALL ZPTTRS( 'Lower', N, NRHS, DF, EF, X, LDX, INFO )
                    221: *
                    222: *     Use iterative refinement to improve the computed solutions and
                    223: *     compute error bounds and backward error estimates for them.
                    224: *
                    225:       CALL ZPTRFS( 'Lower', N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
                    226:      $             BERR, WORK, RWORK, INFO )
                    227: *
                    228: *     Set INFO = N+1 if the matrix is singular to working precision.
                    229: *
                    230:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    231:      $   INFO = N + 1
                    232: *
                    233:       RETURN
                    234: *
                    235: *     End of ZPTSVX
                    236: *
                    237:       END

CVSweb interface <joel.bertrand@systella.fr>