Annotation of rpl/lapack/lapack/zptsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
        !             2:      $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          FACT
        !            11:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            12:       DOUBLE PRECISION   RCOND
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
        !            16:      $                   RWORK( * )
        !            17:       COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
        !            18:      $                   X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZPTSVX uses the factorization A = L*D*L**H to compute the solution
        !            25: *  to a complex system of linear equations A*X = B, where A is an
        !            26: *  N-by-N Hermitian positive definite tridiagonal matrix and X and B
        !            27: *  are N-by-NRHS matrices.
        !            28: *
        !            29: *  Error bounds on the solution and a condition estimate are also
        !            30: *  provided.
        !            31: *
        !            32: *  Description
        !            33: *  ===========
        !            34: *
        !            35: *  The following steps are performed:
        !            36: *
        !            37: *  1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L
        !            38: *     is a unit lower bidiagonal matrix and D is diagonal.  The
        !            39: *     factorization can also be regarded as having the form
        !            40: *     A = U**H*D*U.
        !            41: *
        !            42: *  2. If the leading i-by-i principal minor is not positive definite,
        !            43: *     then the routine returns with INFO = i. Otherwise, the factored
        !            44: *     form of A is used to estimate the condition number of the matrix
        !            45: *     A.  If the reciprocal of the condition number is less than machine
        !            46: *     precision, INFO = N+1 is returned as a warning, but the routine
        !            47: *     still goes on to solve for X and compute error bounds as
        !            48: *     described below.
        !            49: *
        !            50: *  3. The system of equations is solved for X using the factored form
        !            51: *     of A.
        !            52: *
        !            53: *  4. Iterative refinement is applied to improve the computed solution
        !            54: *     matrix and calculate error bounds and backward error estimates
        !            55: *     for it.
        !            56: *
        !            57: *  Arguments
        !            58: *  =========
        !            59: *
        !            60: *  FACT    (input) CHARACTER*1
        !            61: *          Specifies whether or not the factored form of the matrix
        !            62: *          A is supplied on entry.
        !            63: *          = 'F':  On entry, DF and EF contain the factored form of A.
        !            64: *                  D, E, DF, and EF will not be modified.
        !            65: *          = 'N':  The matrix A will be copied to DF and EF and
        !            66: *                  factored.
        !            67: *
        !            68: *  N       (input) INTEGER
        !            69: *          The order of the matrix A.  N >= 0.
        !            70: *
        !            71: *  NRHS    (input) INTEGER
        !            72: *          The number of right hand sides, i.e., the number of columns
        !            73: *          of the matrices B and X.  NRHS >= 0.
        !            74: *
        !            75: *  D       (input) DOUBLE PRECISION array, dimension (N)
        !            76: *          The n diagonal elements of the tridiagonal matrix A.
        !            77: *
        !            78: *  E       (input) COMPLEX*16 array, dimension (N-1)
        !            79: *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
        !            80: *
        !            81: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
        !            82: *          If FACT = 'F', then DF is an input argument and on entry
        !            83: *          contains the n diagonal elements of the diagonal matrix D
        !            84: *          from the L*D*L**H factorization of A.
        !            85: *          If FACT = 'N', then DF is an output argument and on exit
        !            86: *          contains the n diagonal elements of the diagonal matrix D
        !            87: *          from the L*D*L**H factorization of A.
        !            88: *
        !            89: *  EF      (input or output) COMPLEX*16 array, dimension (N-1)
        !            90: *          If FACT = 'F', then EF is an input argument and on entry
        !            91: *          contains the (n-1) subdiagonal elements of the unit
        !            92: *          bidiagonal factor L from the L*D*L**H factorization of A.
        !            93: *          If FACT = 'N', then EF is an output argument and on exit
        !            94: *          contains the (n-1) subdiagonal elements of the unit
        !            95: *          bidiagonal factor L from the L*D*L**H factorization of A.
        !            96: *
        !            97: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !            98: *          The N-by-NRHS right hand side matrix B.
        !            99: *
        !           100: *  LDB     (input) INTEGER
        !           101: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           102: *
        !           103: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           104: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
        !           105: *
        !           106: *  LDX     (input) INTEGER
        !           107: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           108: *
        !           109: *  RCOND   (output) DOUBLE PRECISION
        !           110: *          The reciprocal condition number of the matrix A.  If RCOND
        !           111: *          is less than the machine precision (in particular, if
        !           112: *          RCOND = 0), the matrix is singular to working precision.
        !           113: *          This condition is indicated by a return code of INFO > 0.
        !           114: *
        !           115: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           116: *          The forward error bound for each solution vector
        !           117: *          X(j) (the j-th column of the solution matrix X).
        !           118: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           119: *          is an estimated upper bound for the magnitude of the largest
        !           120: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           121: *          largest element in X(j).
        !           122: *
        !           123: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           124: *          The componentwise relative backward error of each solution
        !           125: *          vector X(j) (i.e., the smallest relative change in any
        !           126: *          element of A or B that makes X(j) an exact solution).
        !           127: *
        !           128: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
        !           129: *
        !           130: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           131: *
        !           132: *  INFO    (output) INTEGER
        !           133: *          = 0:  successful exit
        !           134: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           135: *          > 0:  if INFO = i, and i is
        !           136: *                <= N:  the leading minor of order i of A is
        !           137: *                       not positive definite, so the factorization
        !           138: *                       could not be completed, and the solution has not
        !           139: *                       been computed. RCOND = 0 is returned.
        !           140: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           141: *                       precision, meaning that the matrix is singular
        !           142: *                       to working precision.  Nevertheless, the
        !           143: *                       solution and error bounds are computed because
        !           144: *                       there are a number of situations where the
        !           145: *                       computed solution can be more accurate than the
        !           146: *                       value of RCOND would suggest.
        !           147: *
        !           148: *  =====================================================================
        !           149: *
        !           150: *     .. Parameters ..
        !           151:       DOUBLE PRECISION   ZERO
        !           152:       PARAMETER          ( ZERO = 0.0D+0 )
        !           153: *     ..
        !           154: *     .. Local Scalars ..
        !           155:       LOGICAL            NOFACT
        !           156:       DOUBLE PRECISION   ANORM
        !           157: *     ..
        !           158: *     .. External Functions ..
        !           159:       LOGICAL            LSAME
        !           160:       DOUBLE PRECISION   DLAMCH, ZLANHT
        !           161:       EXTERNAL           LSAME, DLAMCH, ZLANHT
        !           162: *     ..
        !           163: *     .. External Subroutines ..
        !           164:       EXTERNAL           DCOPY, XERBLA, ZCOPY, ZLACPY, ZPTCON, ZPTRFS,
        !           165:      $                   ZPTTRF, ZPTTRS
        !           166: *     ..
        !           167: *     .. Intrinsic Functions ..
        !           168:       INTRINSIC          MAX
        !           169: *     ..
        !           170: *     .. Executable Statements ..
        !           171: *
        !           172: *     Test the input parameters.
        !           173: *
        !           174:       INFO = 0
        !           175:       NOFACT = LSAME( FACT, 'N' )
        !           176:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
        !           177:          INFO = -1
        !           178:       ELSE IF( N.LT.0 ) THEN
        !           179:          INFO = -2
        !           180:       ELSE IF( NRHS.LT.0 ) THEN
        !           181:          INFO = -3
        !           182:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           183:          INFO = -9
        !           184:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           185:          INFO = -11
        !           186:       END IF
        !           187:       IF( INFO.NE.0 ) THEN
        !           188:          CALL XERBLA( 'ZPTSVX', -INFO )
        !           189:          RETURN
        !           190:       END IF
        !           191: *
        !           192:       IF( NOFACT ) THEN
        !           193: *
        !           194: *        Compute the L*D*L' (or U'*D*U) factorization of A.
        !           195: *
        !           196:          CALL DCOPY( N, D, 1, DF, 1 )
        !           197:          IF( N.GT.1 )
        !           198:      $      CALL ZCOPY( N-1, E, 1, EF, 1 )
        !           199:          CALL ZPTTRF( N, DF, EF, INFO )
        !           200: *
        !           201: *        Return if INFO is non-zero.
        !           202: *
        !           203:          IF( INFO.GT.0 )THEN
        !           204:             RCOND = ZERO
        !           205:             RETURN
        !           206:          END IF
        !           207:       END IF
        !           208: *
        !           209: *     Compute the norm of the matrix A.
        !           210: *
        !           211:       ANORM = ZLANHT( '1', N, D, E )
        !           212: *
        !           213: *     Compute the reciprocal of the condition number of A.
        !           214: *
        !           215:       CALL ZPTCON( N, DF, EF, ANORM, RCOND, RWORK, INFO )
        !           216: *
        !           217: *     Compute the solution vectors X.
        !           218: *
        !           219:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           220:       CALL ZPTTRS( 'Lower', N, NRHS, DF, EF, X, LDX, INFO )
        !           221: *
        !           222: *     Use iterative refinement to improve the computed solutions and
        !           223: *     compute error bounds and backward error estimates for them.
        !           224: *
        !           225:       CALL ZPTRFS( 'Lower', N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
        !           226:      $             BERR, WORK, RWORK, INFO )
        !           227: *
        !           228: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           229: *
        !           230:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           231:      $   INFO = N + 1
        !           232: *
        !           233:       RETURN
        !           234: *
        !           235: *     End of ZPTSVX
        !           236: *
        !           237:       END

CVSweb interface <joel.bertrand@systella.fr>