Annotation of rpl/lapack/lapack/zptrfs.f, revision 1.19

1.9       bertrand    1: *> \brief \b ZPTRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZPTRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptrfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
                     22: *                          FERR, BERR, WORK, RWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
                     30: *      $                   RWORK( * )
                     31: *       COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
1.16      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZPTRFS improves the computed solution to a system of linear
                     42: *> equations when the coefficient matrix is Hermitian positive definite
                     43: *> and tridiagonal, and provides error bounds and backward error
                     44: *> estimates for the solution.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] UPLO
                     51: *> \verbatim
                     52: *>          UPLO is CHARACTER*1
                     53: *>          Specifies whether the superdiagonal or the subdiagonal of the
                     54: *>          tridiagonal matrix A is stored and the form of the
                     55: *>          factorization:
                     56: *>          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
                     57: *>          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
                     58: *>          (The two forms are equivalent if A is real.)
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] NRHS
                     68: *> \verbatim
                     69: *>          NRHS is INTEGER
                     70: *>          The number of right hand sides, i.e., the number of columns
                     71: *>          of the matrix B.  NRHS >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] D
                     75: *> \verbatim
                     76: *>          D is DOUBLE PRECISION array, dimension (N)
                     77: *>          The n real diagonal elements of the tridiagonal matrix A.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] E
                     81: *> \verbatim
                     82: *>          E is COMPLEX*16 array, dimension (N-1)
                     83: *>          The (n-1) off-diagonal elements of the tridiagonal matrix A
                     84: *>          (see UPLO).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] DF
                     88: *> \verbatim
                     89: *>          DF is DOUBLE PRECISION array, dimension (N)
                     90: *>          The n diagonal elements of the diagonal matrix D from
                     91: *>          the factorization computed by ZPTTRF.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] EF
                     95: *> \verbatim
                     96: *>          EF is COMPLEX*16 array, dimension (N-1)
                     97: *>          The (n-1) off-diagonal elements of the unit bidiagonal
                     98: *>          factor U or L from the factorization computed by ZPTTRF
                     99: *>          (see UPLO).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] B
                    103: *> \verbatim
                    104: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    105: *>          The right hand side matrix B.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] LDB
                    109: *> \verbatim
                    110: *>          LDB is INTEGER
                    111: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] X
                    115: *> \verbatim
                    116: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    117: *>          On entry, the solution matrix X, as computed by ZPTTRS.
                    118: *>          On exit, the improved solution matrix X.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDX
                    122: *> \verbatim
                    123: *>          LDX is INTEGER
                    124: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] FERR
                    128: *> \verbatim
                    129: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    130: *>          The forward error bound for each solution vector
                    131: *>          X(j) (the j-th column of the solution matrix X).
                    132: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    133: *>          is an estimated upper bound for the magnitude of the largest
                    134: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    135: *>          largest element in X(j).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] BERR
                    139: *> \verbatim
                    140: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    141: *>          The componentwise relative backward error of each solution
                    142: *>          vector X(j) (i.e., the smallest relative change in
                    143: *>          any element of A or B that makes X(j) an exact solution).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] WORK
                    147: *> \verbatim
                    148: *>          WORK is COMPLEX*16 array, dimension (N)
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] RWORK
                    152: *> \verbatim
                    153: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] INFO
                    157: *> \verbatim
                    158: *>          INFO is INTEGER
                    159: *>          = 0:  successful exit
                    160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    161: *> \endverbatim
                    162: *
                    163: *> \par Internal Parameters:
                    164: *  =========================
                    165: *>
                    166: *> \verbatim
                    167: *>  ITMAX is the maximum number of steps of iterative refinement.
                    168: *> \endverbatim
                    169: *
                    170: *  Authors:
                    171: *  ========
                    172: *
1.16      bertrand  173: *> \author Univ. of Tennessee
                    174: *> \author Univ. of California Berkeley
                    175: *> \author Univ. of Colorado Denver
                    176: *> \author NAG Ltd.
1.9       bertrand  177: *
1.12      bertrand  178: *> \ingroup complex16PTcomputational
1.9       bertrand  179: *
                    180: *  =====================================================================
1.1       bertrand  181:       SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
                    182:      $                   FERR, BERR, WORK, RWORK, INFO )
                    183: *
1.19    ! bertrand  184: *  -- LAPACK computational routine --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    187: *
                    188: *     .. Scalar Arguments ..
                    189:       CHARACTER          UPLO
                    190:       INTEGER            INFO, LDB, LDX, N, NRHS
                    191: *     ..
                    192: *     .. Array Arguments ..
                    193:       DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
                    194:      $                   RWORK( * )
                    195:       COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
                    196:      $                   X( LDX, * )
                    197: *     ..
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Parameters ..
                    202:       INTEGER            ITMAX
                    203:       PARAMETER          ( ITMAX = 5 )
                    204:       DOUBLE PRECISION   ZERO
                    205:       PARAMETER          ( ZERO = 0.0D+0 )
                    206:       DOUBLE PRECISION   ONE
                    207:       PARAMETER          ( ONE = 1.0D+0 )
                    208:       DOUBLE PRECISION   TWO
                    209:       PARAMETER          ( TWO = 2.0D+0 )
                    210:       DOUBLE PRECISION   THREE
                    211:       PARAMETER          ( THREE = 3.0D+0 )
                    212: *     ..
                    213: *     .. Local Scalars ..
                    214:       LOGICAL            UPPER
                    215:       INTEGER            COUNT, I, IX, J, NZ
                    216:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
                    217:       COMPLEX*16         BI, CX, DX, EX, ZDUM
                    218: *     ..
                    219: *     .. External Functions ..
                    220:       LOGICAL            LSAME
                    221:       INTEGER            IDAMAX
                    222:       DOUBLE PRECISION   DLAMCH
                    223:       EXTERNAL           LSAME, IDAMAX, DLAMCH
                    224: *     ..
                    225: *     .. External Subroutines ..
                    226:       EXTERNAL           XERBLA, ZAXPY, ZPTTRS
                    227: *     ..
                    228: *     .. Intrinsic Functions ..
                    229:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
                    230: *     ..
                    231: *     .. Statement Functions ..
                    232:       DOUBLE PRECISION   CABS1
                    233: *     ..
                    234: *     .. Statement Function definitions ..
                    235:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    236: *     ..
                    237: *     .. Executable Statements ..
                    238: *
                    239: *     Test the input parameters.
                    240: *
                    241:       INFO = 0
                    242:       UPPER = LSAME( UPLO, 'U' )
                    243:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    244:          INFO = -1
                    245:       ELSE IF( N.LT.0 ) THEN
                    246:          INFO = -2
                    247:       ELSE IF( NRHS.LT.0 ) THEN
                    248:          INFO = -3
                    249:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    250:          INFO = -9
                    251:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    252:          INFO = -11
                    253:       END IF
                    254:       IF( INFO.NE.0 ) THEN
                    255:          CALL XERBLA( 'ZPTRFS', -INFO )
                    256:          RETURN
                    257:       END IF
                    258: *
                    259: *     Quick return if possible
                    260: *
                    261:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    262:          DO 10 J = 1, NRHS
                    263:             FERR( J ) = ZERO
                    264:             BERR( J ) = ZERO
                    265:    10    CONTINUE
                    266:          RETURN
                    267:       END IF
                    268: *
                    269: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    270: *
                    271:       NZ = 4
                    272:       EPS = DLAMCH( 'Epsilon' )
                    273:       SAFMIN = DLAMCH( 'Safe minimum' )
                    274:       SAFE1 = NZ*SAFMIN
                    275:       SAFE2 = SAFE1 / EPS
                    276: *
                    277: *     Do for each right hand side
                    278: *
                    279:       DO 100 J = 1, NRHS
                    280: *
                    281:          COUNT = 1
                    282:          LSTRES = THREE
                    283:    20    CONTINUE
                    284: *
                    285: *        Loop until stopping criterion is satisfied.
                    286: *
                    287: *        Compute residual R = B - A * X.  Also compute
                    288: *        abs(A)*abs(x) + abs(b) for use in the backward error bound.
                    289: *
                    290:          IF( UPPER ) THEN
                    291:             IF( N.EQ.1 ) THEN
                    292:                BI = B( 1, J )
                    293:                DX = D( 1 )*X( 1, J )
                    294:                WORK( 1 ) = BI - DX
                    295:                RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
                    296:             ELSE
                    297:                BI = B( 1, J )
                    298:                DX = D( 1 )*X( 1, J )
                    299:                EX = E( 1 )*X( 2, J )
                    300:                WORK( 1 ) = BI - DX - EX
                    301:                RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
                    302:      $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
                    303:                DO 30 I = 2, N - 1
                    304:                   BI = B( I, J )
                    305:                   CX = DCONJG( E( I-1 ) )*X( I-1, J )
                    306:                   DX = D( I )*X( I, J )
                    307:                   EX = E( I )*X( I+1, J )
                    308:                   WORK( I ) = BI - CX - DX - EX
                    309:                   RWORK( I ) = CABS1( BI ) +
                    310:      $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
                    311:      $                         CABS1( DX ) + CABS1( E( I ) )*
                    312:      $                         CABS1( X( I+1, J ) )
                    313:    30          CONTINUE
                    314:                BI = B( N, J )
                    315:                CX = DCONJG( E( N-1 ) )*X( N-1, J )
                    316:                DX = D( N )*X( N, J )
                    317:                WORK( N ) = BI - CX - DX
                    318:                RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
                    319:      $                      CABS1( X( N-1, J ) ) + CABS1( DX )
                    320:             END IF
                    321:          ELSE
                    322:             IF( N.EQ.1 ) THEN
                    323:                BI = B( 1, J )
                    324:                DX = D( 1 )*X( 1, J )
                    325:                WORK( 1 ) = BI - DX
                    326:                RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
                    327:             ELSE
                    328:                BI = B( 1, J )
                    329:                DX = D( 1 )*X( 1, J )
                    330:                EX = DCONJG( E( 1 ) )*X( 2, J )
                    331:                WORK( 1 ) = BI - DX - EX
                    332:                RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
                    333:      $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
                    334:                DO 40 I = 2, N - 1
                    335:                   BI = B( I, J )
                    336:                   CX = E( I-1 )*X( I-1, J )
                    337:                   DX = D( I )*X( I, J )
                    338:                   EX = DCONJG( E( I ) )*X( I+1, J )
                    339:                   WORK( I ) = BI - CX - DX - EX
                    340:                   RWORK( I ) = CABS1( BI ) +
                    341:      $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
                    342:      $                         CABS1( DX ) + CABS1( E( I ) )*
                    343:      $                         CABS1( X( I+1, J ) )
                    344:    40          CONTINUE
                    345:                BI = B( N, J )
                    346:                CX = E( N-1 )*X( N-1, J )
                    347:                DX = D( N )*X( N, J )
                    348:                WORK( N ) = BI - CX - DX
                    349:                RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
                    350:      $                      CABS1( X( N-1, J ) ) + CABS1( DX )
                    351:             END IF
                    352:          END IF
                    353: *
                    354: *        Compute componentwise relative backward error from formula
                    355: *
                    356: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    357: *
                    358: *        where abs(Z) is the componentwise absolute value of the matrix
                    359: *        or vector Z.  If the i-th component of the denominator is less
                    360: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    361: *        numerator and denominator before dividing.
                    362: *
                    363:          S = ZERO
                    364:          DO 50 I = 1, N
                    365:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    366:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    367:             ELSE
                    368:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    369:      $             ( RWORK( I )+SAFE1 ) )
                    370:             END IF
                    371:    50    CONTINUE
                    372:          BERR( J ) = S
                    373: *
                    374: *        Test stopping criterion. Continue iterating if
                    375: *           1) The residual BERR(J) is larger than machine epsilon, and
                    376: *           2) BERR(J) decreased by at least a factor of 2 during the
                    377: *              last iteration, and
                    378: *           3) At most ITMAX iterations tried.
                    379: *
                    380:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    381:      $       COUNT.LE.ITMAX ) THEN
                    382: *
                    383: *           Update solution and try again.
                    384: *
                    385:             CALL ZPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
                    386:             CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
                    387:             LSTRES = BERR( J )
                    388:             COUNT = COUNT + 1
                    389:             GO TO 20
                    390:          END IF
                    391: *
                    392: *        Bound error from formula
                    393: *
                    394: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    395: *        norm( abs(inv(A))*
                    396: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    397: *
                    398: *        where
                    399: *          norm(Z) is the magnitude of the largest component of Z
                    400: *          inv(A) is the inverse of A
                    401: *          abs(Z) is the componentwise absolute value of the matrix or
                    402: *             vector Z
                    403: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    404: *          EPS is machine epsilon
                    405: *
                    406: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    407: *        is incremented by SAFE1 if the i-th component of
                    408: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    409: *
                    410:          DO 60 I = 1, N
                    411:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    412:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    413:             ELSE
                    414:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    415:      $                      SAFE1
                    416:             END IF
                    417:    60    CONTINUE
                    418:          IX = IDAMAX( N, RWORK, 1 )
                    419:          FERR( J ) = RWORK( IX )
                    420: *
                    421: *        Estimate the norm of inv(A).
                    422: *
                    423: *        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
                    424: *
                    425: *           m(i,j) =  abs(A(i,j)), i = j,
                    426: *           m(i,j) = -abs(A(i,j)), i .ne. j,
                    427: *
1.8       bertrand  428: *        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**H.
1.1       bertrand  429: *
                    430: *        Solve M(L) * x = e.
                    431: *
                    432:          RWORK( 1 ) = ONE
                    433:          DO 70 I = 2, N
                    434:             RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
                    435:    70    CONTINUE
                    436: *
1.8       bertrand  437: *        Solve D * M(L)**H * x = b.
1.1       bertrand  438: *
                    439:          RWORK( N ) = RWORK( N ) / DF( N )
                    440:          DO 80 I = N - 1, 1, -1
                    441:             RWORK( I ) = RWORK( I ) / DF( I ) +
                    442:      $                   RWORK( I+1 )*ABS( EF( I ) )
                    443:    80    CONTINUE
                    444: *
                    445: *        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
                    446: *
                    447:          IX = IDAMAX( N, RWORK, 1 )
                    448:          FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
                    449: *
                    450: *        Normalize error.
                    451: *
                    452:          LSTRES = ZERO
                    453:          DO 90 I = 1, N
                    454:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    455:    90    CONTINUE
                    456:          IF( LSTRES.NE.ZERO )
                    457:      $      FERR( J ) = FERR( J ) / LSTRES
                    458: *
                    459:   100 CONTINUE
                    460: *
                    461:       RETURN
                    462: *
                    463: *     End of ZPTRFS
                    464: *
                    465:       END

CVSweb interface <joel.bertrand@systella.fr>