File:  [local] / rpl / lapack / lapack / zpteqr.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:56 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZPTEQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPTEQR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpteqr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpteqr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpteqr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          COMPZ
   25: *       INTEGER            INFO, LDZ, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
   29: *       COMPLEX*16         Z( LDZ, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a
   39: *> symmetric positive definite tridiagonal matrix by first factoring the
   40: *> matrix using DPTTRF and then calling ZBDSQR to compute the singular
   41: *> values of the bidiagonal factor.
   42: *>
   43: *> This routine computes the eigenvalues of the positive definite
   44: *> tridiagonal matrix to high relative accuracy.  This means that if the
   45: *> eigenvalues range over many orders of magnitude in size, then the
   46: *> small eigenvalues and corresponding eigenvectors will be computed
   47: *> more accurately than, for example, with the standard QR method.
   48: *>
   49: *> The eigenvectors of a full or band positive definite Hermitian matrix
   50: *> can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to
   51: *> reduce this matrix to tridiagonal form.  (The reduction to
   52: *> tridiagonal form, however, may preclude the possibility of obtaining
   53: *> high relative accuracy in the small eigenvalues of the original
   54: *> matrix, if these eigenvalues range over many orders of magnitude.)
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] COMPZ
   61: *> \verbatim
   62: *>          COMPZ is CHARACTER*1
   63: *>          = 'N':  Compute eigenvalues only.
   64: *>          = 'V':  Compute eigenvectors of original Hermitian
   65: *>                  matrix also.  Array Z contains the unitary matrix
   66: *>                  used to reduce the original matrix to tridiagonal
   67: *>                  form.
   68: *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] N
   72: *> \verbatim
   73: *>          N is INTEGER
   74: *>          The order of the matrix.  N >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] D
   78: *> \verbatim
   79: *>          D is DOUBLE PRECISION array, dimension (N)
   80: *>          On entry, the n diagonal elements of the tridiagonal matrix.
   81: *>          On normal exit, D contains the eigenvalues, in descending
   82: *>          order.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] E
   86: *> \verbatim
   87: *>          E is DOUBLE PRECISION array, dimension (N-1)
   88: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   89: *>          matrix.
   90: *>          On exit, E has been destroyed.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] Z
   94: *> \verbatim
   95: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
   96: *>          On entry, if COMPZ = 'V', the unitary matrix used in the
   97: *>          reduction to tridiagonal form.
   98: *>          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
   99: *>          original Hermitian matrix;
  100: *>          if COMPZ = 'I', the orthonormal eigenvectors of the
  101: *>          tridiagonal matrix.
  102: *>          If INFO > 0 on exit, Z contains the eigenvectors associated
  103: *>          with only the stored eigenvalues.
  104: *>          If  COMPZ = 'N', then Z is not referenced.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDZ
  108: *> \verbatim
  109: *>          LDZ is INTEGER
  110: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  111: *>          COMPZ = 'V' or 'I', LDZ >= max(1,N).
  112: *> \endverbatim
  113: *>
  114: *> \param[out] WORK
  115: *> \verbatim
  116: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          = 0:  successful exit.
  123: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  124: *>          > 0:  if INFO = i, and i is:
  125: *>                <= N  the Cholesky factorization of the matrix could
  126: *>                      not be performed because the i-th principal minor
  127: *>                      was not positive definite.
  128: *>                > N   the SVD algorithm failed to converge;
  129: *>                      if INFO = N+i, i off-diagonal elements of the
  130: *>                      bidiagonal factor did not converge to zero.
  131: *> \endverbatim
  132: *
  133: *  Authors:
  134: *  ========
  135: *
  136: *> \author Univ. of Tennessee 
  137: *> \author Univ. of California Berkeley 
  138: *> \author Univ. of Colorado Denver 
  139: *> \author NAG Ltd. 
  140: *
  141: *> \date November 2011
  142: *
  143: *> \ingroup complex16OTHERcomputational
  144: *
  145: *  =====================================================================
  146:       SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  147: *
  148: *  -- LAPACK computational routine (version 3.4.0) --
  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *     November 2011
  152: *
  153: *     .. Scalar Arguments ..
  154:       CHARACTER          COMPZ
  155:       INTEGER            INFO, LDZ, N
  156: *     ..
  157: *     .. Array Arguments ..
  158:       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
  159:       COMPLEX*16         Z( LDZ, * )
  160: *     ..
  161: *
  162: *  ====================================================================
  163: *
  164: *     .. Parameters ..
  165:       COMPLEX*16         CZERO, CONE
  166:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  167:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  168: *     ..
  169: *     .. External Functions ..
  170:       LOGICAL            LSAME
  171:       EXTERNAL           LSAME
  172: *     ..
  173: *     .. External Subroutines ..
  174:       EXTERNAL           DPTTRF, XERBLA, ZBDSQR, ZLASET
  175: *     ..
  176: *     .. Local Arrays ..
  177:       COMPLEX*16         C( 1, 1 ), VT( 1, 1 )
  178: *     ..
  179: *     .. Local Scalars ..
  180:       INTEGER            I, ICOMPZ, NRU
  181: *     ..
  182: *     .. Intrinsic Functions ..
  183:       INTRINSIC          MAX, SQRT
  184: *     ..
  185: *     .. Executable Statements ..
  186: *
  187: *     Test the input parameters.
  188: *
  189:       INFO = 0
  190: *
  191:       IF( LSAME( COMPZ, 'N' ) ) THEN
  192:          ICOMPZ = 0
  193:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  194:          ICOMPZ = 1
  195:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  196:          ICOMPZ = 2
  197:       ELSE
  198:          ICOMPZ = -1
  199:       END IF
  200:       IF( ICOMPZ.LT.0 ) THEN
  201:          INFO = -1
  202:       ELSE IF( N.LT.0 ) THEN
  203:          INFO = -2
  204:       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
  205:      $         N ) ) ) THEN
  206:          INFO = -6
  207:       END IF
  208:       IF( INFO.NE.0 ) THEN
  209:          CALL XERBLA( 'ZPTEQR', -INFO )
  210:          RETURN
  211:       END IF
  212: *
  213: *     Quick return if possible
  214: *
  215:       IF( N.EQ.0 )
  216:      $   RETURN
  217: *
  218:       IF( N.EQ.1 ) THEN
  219:          IF( ICOMPZ.GT.0 )
  220:      $      Z( 1, 1 ) = CONE
  221:          RETURN
  222:       END IF
  223:       IF( ICOMPZ.EQ.2 )
  224:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
  225: *
  226: *     Call DPTTRF to factor the matrix.
  227: *
  228:       CALL DPTTRF( N, D, E, INFO )
  229:       IF( INFO.NE.0 )
  230:      $   RETURN
  231:       DO 10 I = 1, N
  232:          D( I ) = SQRT( D( I ) )
  233:    10 CONTINUE
  234:       DO 20 I = 1, N - 1
  235:          E( I ) = E( I )*D( I )
  236:    20 CONTINUE
  237: *
  238: *     Call ZBDSQR to compute the singular values/vectors of the
  239: *     bidiagonal factor.
  240: *
  241:       IF( ICOMPZ.GT.0 ) THEN
  242:          NRU = N
  243:       ELSE
  244:          NRU = 0
  245:       END IF
  246:       CALL ZBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
  247:      $             WORK, INFO )
  248: *
  249: *     Square the singular values.
  250: *
  251:       IF( INFO.EQ.0 ) THEN
  252:          DO 30 I = 1, N
  253:             D( I ) = D( I )*D( I )
  254:    30    CONTINUE
  255:       ELSE
  256:          INFO = N + INFO
  257:       END IF
  258: *
  259:       RETURN
  260: *
  261: *     End of ZPTEQR
  262: *
  263:       END

CVSweb interface <joel.bertrand@systella.fr>