Annotation of rpl/lapack/lapack/zpteqr.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          COMPZ
                     10:       INTEGER            INFO, LDZ, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
                     14:       COMPLEX*16         Z( LDZ, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a
                     21: *  symmetric positive definite tridiagonal matrix by first factoring the
                     22: *  matrix using DPTTRF and then calling ZBDSQR to compute the singular
                     23: *  values of the bidiagonal factor.
                     24: *
                     25: *  This routine computes the eigenvalues of the positive definite
                     26: *  tridiagonal matrix to high relative accuracy.  This means that if the
                     27: *  eigenvalues range over many orders of magnitude in size, then the
                     28: *  small eigenvalues and corresponding eigenvectors will be computed
                     29: *  more accurately than, for example, with the standard QR method.
                     30: *
                     31: *  The eigenvectors of a full or band positive definite Hermitian matrix
                     32: *  can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to
                     33: *  reduce this matrix to tridiagonal form.  (The reduction to
                     34: *  tridiagonal form, however, may preclude the possibility of obtaining
                     35: *  high relative accuracy in the small eigenvalues of the original
                     36: *  matrix, if these eigenvalues range over many orders of magnitude.)
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  COMPZ   (input) CHARACTER*1
                     42: *          = 'N':  Compute eigenvalues only.
                     43: *          = 'V':  Compute eigenvectors of original Hermitian
                     44: *                  matrix also.  Array Z contains the unitary matrix
                     45: *                  used to reduce the original matrix to tridiagonal
                     46: *                  form.
                     47: *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
                     48: *
                     49: *  N       (input) INTEGER
                     50: *          The order of the matrix.  N >= 0.
                     51: *
                     52: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     53: *          On entry, the n diagonal elements of the tridiagonal matrix.
                     54: *          On normal exit, D contains the eigenvalues, in descending
                     55: *          order.
                     56: *
                     57: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
                     58: *          On entry, the (n-1) subdiagonal elements of the tridiagonal
                     59: *          matrix.
                     60: *          On exit, E has been destroyed.
                     61: *
                     62: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)
                     63: *          On entry, if COMPZ = 'V', the unitary matrix used in the
                     64: *          reduction to tridiagonal form.
                     65: *          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
                     66: *          original Hermitian matrix;
                     67: *          if COMPZ = 'I', the orthonormal eigenvectors of the
                     68: *          tridiagonal matrix.
                     69: *          If INFO > 0 on exit, Z contains the eigenvectors associated
                     70: *          with only the stored eigenvalues.
                     71: *          If  COMPZ = 'N', then Z is not referenced.
                     72: *
                     73: *  LDZ     (input) INTEGER
                     74: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     75: *          COMPZ = 'V' or 'I', LDZ >= max(1,N).
                     76: *
                     77: *  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
                     78: *
                     79: *  INFO    (output) INTEGER
                     80: *          = 0:  successful exit.
                     81: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     82: *          > 0:  if INFO = i, and i is:
                     83: *                <= N  the Cholesky factorization of the matrix could
                     84: *                      not be performed because the i-th principal minor
                     85: *                      was not positive definite.
                     86: *                > N   the SVD algorithm failed to converge;
                     87: *                      if INFO = N+i, i off-diagonal elements of the
                     88: *                      bidiagonal factor did not converge to zero.
                     89: *
                     90: *  ====================================================================
                     91: *
                     92: *     .. Parameters ..
                     93:       COMPLEX*16         CZERO, CONE
                     94:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                     95:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                     96: *     ..
                     97: *     .. External Functions ..
                     98:       LOGICAL            LSAME
                     99:       EXTERNAL           LSAME
                    100: *     ..
                    101: *     .. External Subroutines ..
                    102:       EXTERNAL           DPTTRF, XERBLA, ZBDSQR, ZLASET
                    103: *     ..
                    104: *     .. Local Arrays ..
                    105:       COMPLEX*16         C( 1, 1 ), VT( 1, 1 )
                    106: *     ..
                    107: *     .. Local Scalars ..
                    108:       INTEGER            I, ICOMPZ, NRU
                    109: *     ..
                    110: *     .. Intrinsic Functions ..
                    111:       INTRINSIC          MAX, SQRT
                    112: *     ..
                    113: *     .. Executable Statements ..
                    114: *
                    115: *     Test the input parameters.
                    116: *
                    117:       INFO = 0
                    118: *
                    119:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    120:          ICOMPZ = 0
                    121:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    122:          ICOMPZ = 1
                    123:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    124:          ICOMPZ = 2
                    125:       ELSE
                    126:          ICOMPZ = -1
                    127:       END IF
                    128:       IF( ICOMPZ.LT.0 ) THEN
                    129:          INFO = -1
                    130:       ELSE IF( N.LT.0 ) THEN
                    131:          INFO = -2
                    132:       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
                    133:      $         N ) ) ) THEN
                    134:          INFO = -6
                    135:       END IF
                    136:       IF( INFO.NE.0 ) THEN
                    137:          CALL XERBLA( 'ZPTEQR', -INFO )
                    138:          RETURN
                    139:       END IF
                    140: *
                    141: *     Quick return if possible
                    142: *
                    143:       IF( N.EQ.0 )
                    144:      $   RETURN
                    145: *
                    146:       IF( N.EQ.1 ) THEN
                    147:          IF( ICOMPZ.GT.0 )
                    148:      $      Z( 1, 1 ) = CONE
                    149:          RETURN
                    150:       END IF
                    151:       IF( ICOMPZ.EQ.2 )
                    152:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
                    153: *
                    154: *     Call DPTTRF to factor the matrix.
                    155: *
                    156:       CALL DPTTRF( N, D, E, INFO )
                    157:       IF( INFO.NE.0 )
                    158:      $   RETURN
                    159:       DO 10 I = 1, N
                    160:          D( I ) = SQRT( D( I ) )
                    161:    10 CONTINUE
                    162:       DO 20 I = 1, N - 1
                    163:          E( I ) = E( I )*D( I )
                    164:    20 CONTINUE
                    165: *
                    166: *     Call ZBDSQR to compute the singular values/vectors of the
                    167: *     bidiagonal factor.
                    168: *
                    169:       IF( ICOMPZ.GT.0 ) THEN
                    170:          NRU = N
                    171:       ELSE
                    172:          NRU = 0
                    173:       END IF
                    174:       CALL ZBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
                    175:      $             WORK, INFO )
                    176: *
                    177: *     Square the singular values.
                    178: *
                    179:       IF( INFO.EQ.0 ) THEN
                    180:          DO 30 I = 1, N
                    181:             D( I ) = D( I )*D( I )
                    182:    30    CONTINUE
                    183:       ELSE
                    184:          INFO = N + INFO
                    185:       END IF
                    186: *
                    187:       RETURN
                    188: *
                    189: *     End of ZPTEQR
                    190: *
                    191:       END

CVSweb interface <joel.bertrand@systella.fr>