File:  [local] / rpl / lapack / lapack / zpstrf.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:35 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPSTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * )
   30: *       DOUBLE PRECISION   WORK( 2*N )
   31: *       INTEGER            PIV( N )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPSTRF computes the Cholesky factorization with complete
   41: *> pivoting of a complex Hermitian positive semidefinite matrix A.
   42: *>
   43: *> The factorization has the form
   44: *>    P**T * A * P = U**H * U ,  if UPLO = 'U',
   45: *>    P**T * A * P = L  * L**H,  if UPLO = 'L',
   46: *> where U is an upper triangular matrix and L is lower triangular, and
   47: *> P is stored as vector PIV.
   48: *>
   49: *> This algorithm does not attempt to check that A is positive
   50: *> semidefinite. This version of the algorithm calls level 3 BLAS.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the upper or lower triangular part of the
   60: *>          symmetric matrix A is stored.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   75: *>          n by n upper triangular part of A contains the upper
   76: *>          triangular part of the matrix A, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading n by n lower triangular part of A contains the lower
   79: *>          triangular part of the matrix A, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *>
   82: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   83: *>          factorization as above.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,N).
   90: *> \endverbatim
   91: *>
   92: *> \param[out] PIV
   93: *> \verbatim
   94: *>          PIV is INTEGER array, dimension (N)
   95: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] RANK
   99: *> \verbatim
  100: *>          RANK is INTEGER
  101: *>          The rank of A given by the number of steps the algorithm
  102: *>          completed.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] TOL
  106: *> \verbatim
  107: *>          TOL is DOUBLE PRECISION
  108: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109: *>          will be used. The algorithm terminates at the (K-1)st step
  110: *>          if the pivot <= TOL.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] WORK
  114: *> \verbatim
  115: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  116: *>          Work space.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  123: *>          = 0: algorithm completed successfully, and
  124: *>          > 0: the matrix A is either rank deficient with computed rank
  125: *>               as returned in RANK, or is not positive semidefinite. See
  126: *>               Section 7 of LAPACK Working Note #161 for further
  127: *>               information.
  128: *> \endverbatim
  129: *
  130: *  Authors:
  131: *  ========
  132: *
  133: *> \author Univ. of Tennessee
  134: *> \author Univ. of California Berkeley
  135: *> \author Univ. of Colorado Denver
  136: *> \author NAG Ltd.
  137: *
  138: *> \ingroup complex16OTHERcomputational
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142: *
  143: *  -- LAPACK computational routine --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *
  147: *     .. Scalar Arguments ..
  148:       DOUBLE PRECISION   TOL
  149:       INTEGER            INFO, LDA, N, RANK
  150:       CHARACTER          UPLO
  151: *     ..
  152: *     .. Array Arguments ..
  153:       COMPLEX*16         A( LDA, * )
  154:       DOUBLE PRECISION   WORK( 2*N )
  155:       INTEGER            PIV( N )
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION   ONE, ZERO
  162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163:       COMPLEX*16         CONE
  164:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  165: *     ..
  166: *     .. Local Scalars ..
  167:       COMPLEX*16         ZTEMP
  168:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  169:       INTEGER            I, ITEMP, J, JB, K, NB, PVT
  170:       LOGICAL            UPPER
  171: *     ..
  172: *     .. External Functions ..
  173:       DOUBLE PRECISION   DLAMCH
  174:       INTEGER            ILAENV
  175:       LOGICAL            LSAME, DISNAN
  176:       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
  180:      $                   XERBLA
  181: *     ..
  182: *     .. Intrinsic Functions ..
  183:       INTRINSIC          DBLE, DCONJG, MAX, MIN, SQRT, MAXLOC
  184: *     ..
  185: *     .. Executable Statements ..
  186: *
  187: *     Test the input parameters.
  188: *
  189:       INFO = 0
  190:       UPPER = LSAME( UPLO, 'U' )
  191:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  192:          INFO = -1
  193:       ELSE IF( N.LT.0 ) THEN
  194:          INFO = -2
  195:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  196:          INFO = -4
  197:       END IF
  198:       IF( INFO.NE.0 ) THEN
  199:          CALL XERBLA( 'ZPSTRF', -INFO )
  200:          RETURN
  201:       END IF
  202: *
  203: *     Quick return if possible
  204: *
  205:       IF( N.EQ.0 )
  206:      $   RETURN
  207: *
  208: *     Get block size
  209: *
  210:       NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
  211:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  212: *
  213: *        Use unblocked code
  214: *
  215:          CALL ZPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  216:      $                INFO )
  217:          GO TO 230
  218: *
  219:       ELSE
  220: *
  221: *     Initialize PIV
  222: *
  223:          DO 100 I = 1, N
  224:             PIV( I ) = I
  225:   100    CONTINUE
  226: *
  227: *     Compute stopping value
  228: *
  229:          DO 110 I = 1, N
  230:             WORK( I ) = DBLE( A( I, I ) )
  231:   110    CONTINUE
  232:          PVT = MAXLOC( WORK( 1:N ), 1 )
  233:          AJJ = DBLE( A( PVT, PVT ) )
  234:          IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  235:             RANK = 0
  236:             INFO = 1
  237:             GO TO 230
  238:          END IF
  239: *
  240: *     Compute stopping value if not supplied
  241: *
  242:          IF( TOL.LT.ZERO ) THEN
  243:             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  244:          ELSE
  245:             DSTOP = TOL
  246:          END IF
  247: *
  248: *
  249:          IF( UPPER ) THEN
  250: *
  251: *           Compute the Cholesky factorization P**T * A * P = U**H * U
  252: *
  253:             DO 160 K = 1, N, NB
  254: *
  255: *              Account for last block not being NB wide
  256: *
  257:                JB = MIN( NB, N-K+1 )
  258: *
  259: *              Set relevant part of first half of WORK to zero,
  260: *              holds dot products
  261: *
  262:                DO 120 I = K, N
  263:                   WORK( I ) = 0
  264:   120          CONTINUE
  265: *
  266:                DO 150 J = K, K + JB - 1
  267: *
  268: *              Find pivot, test for exit, else swap rows and columns
  269: *              Update dot products, compute possible pivots which are
  270: *              stored in the second half of WORK
  271: *
  272:                   DO 130 I = J, N
  273: *
  274:                      IF( J.GT.K ) THEN
  275:                         WORK( I ) = WORK( I ) +
  276:      $                              DBLE( DCONJG( A( J-1, I ) )*
  277:      $                                    A( J-1, I ) )
  278:                      END IF
  279:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  280: *
  281:   130             CONTINUE
  282: *
  283:                   IF( J.GT.1 ) THEN
  284:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  285:                      PVT = ITEMP + J - 1
  286:                      AJJ = WORK( N+PVT )
  287:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  288:                         A( J, J ) = AJJ
  289:                         GO TO 220
  290:                      END IF
  291:                   END IF
  292: *
  293:                   IF( J.NE.PVT ) THEN
  294: *
  295: *                    Pivot OK, so can now swap pivot rows and columns
  296: *
  297:                      A( PVT, PVT ) = A( J, J )
  298:                      CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  299:                      IF( PVT.LT.N )
  300:      $                  CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  301:      $                              A( PVT, PVT+1 ), LDA )
  302:                      DO 140 I = J + 1, PVT - 1
  303:                         ZTEMP = DCONJG( A( J, I ) )
  304:                         A( J, I ) = DCONJG( A( I, PVT ) )
  305:                         A( I, PVT ) = ZTEMP
  306:   140                CONTINUE
  307:                      A( J, PVT ) = DCONJG( A( J, PVT ) )
  308: *
  309: *                    Swap dot products and PIV
  310: *
  311:                      DTEMP = WORK( J )
  312:                      WORK( J ) = WORK( PVT )
  313:                      WORK( PVT ) = DTEMP
  314:                      ITEMP = PIV( PVT )
  315:                      PIV( PVT ) = PIV( J )
  316:                      PIV( J ) = ITEMP
  317:                   END IF
  318: *
  319:                   AJJ = SQRT( AJJ )
  320:                   A( J, J ) = AJJ
  321: *
  322: *                 Compute elements J+1:N of row J.
  323: *
  324:                   IF( J.LT.N ) THEN
  325:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  326:                      CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
  327:      $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
  328:      $                           LDA )
  329:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  330:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  331:                   END IF
  332: *
  333:   150          CONTINUE
  334: *
  335: *              Update trailing matrix, J already incremented
  336: *
  337:                IF( K+JB.LE.N ) THEN
  338:                   CALL ZHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
  339:      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
  340:                END IF
  341: *
  342:   160       CONTINUE
  343: *
  344:          ELSE
  345: *
  346: *        Compute the Cholesky factorization P**T * A * P = L * L**H
  347: *
  348:             DO 210 K = 1, N, NB
  349: *
  350: *              Account for last block not being NB wide
  351: *
  352:                JB = MIN( NB, N-K+1 )
  353: *
  354: *              Set relevant part of first half of WORK to zero,
  355: *              holds dot products
  356: *
  357:                DO 170 I = K, N
  358:                   WORK( I ) = 0
  359:   170          CONTINUE
  360: *
  361:                DO 200 J = K, K + JB - 1
  362: *
  363: *              Find pivot, test for exit, else swap rows and columns
  364: *              Update dot products, compute possible pivots which are
  365: *              stored in the second half of WORK
  366: *
  367:                   DO 180 I = J, N
  368: *
  369:                      IF( J.GT.K ) THEN
  370:                         WORK( I ) = WORK( I ) +
  371:      $                              DBLE( DCONJG( A( I, J-1 ) )*
  372:      $                                    A( I, J-1 ) )
  373:                      END IF
  374:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  375: *
  376:   180             CONTINUE
  377: *
  378:                   IF( J.GT.1 ) THEN
  379:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  380:                      PVT = ITEMP + J - 1
  381:                      AJJ = WORK( N+PVT )
  382:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  383:                         A( J, J ) = AJJ
  384:                         GO TO 220
  385:                      END IF
  386:                   END IF
  387: *
  388:                   IF( J.NE.PVT ) THEN
  389: *
  390: *                    Pivot OK, so can now swap pivot rows and columns
  391: *
  392:                      A( PVT, PVT ) = A( J, J )
  393:                      CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  394:                      IF( PVT.LT.N )
  395:      $                  CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
  396:      $                              A( PVT+1, PVT ), 1 )
  397:                      DO 190 I = J + 1, PVT - 1
  398:                         ZTEMP = DCONJG( A( I, J ) )
  399:                         A( I, J ) = DCONJG( A( PVT, I ) )
  400:                         A( PVT, I ) = ZTEMP
  401:   190                CONTINUE
  402:                      A( PVT, J ) = DCONJG( A( PVT, J ) )
  403: *
  404: *
  405: *                    Swap dot products and PIV
  406: *
  407:                      DTEMP = WORK( J )
  408:                      WORK( J ) = WORK( PVT )
  409:                      WORK( PVT ) = DTEMP
  410:                      ITEMP = PIV( PVT )
  411:                      PIV( PVT ) = PIV( J )
  412:                      PIV( J ) = ITEMP
  413:                   END IF
  414: *
  415:                   AJJ = SQRT( AJJ )
  416:                   A( J, J ) = AJJ
  417: *
  418: *                 Compute elements J+1:N of column J.
  419: *
  420:                   IF( J.LT.N ) THEN
  421:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  422:                      CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
  423:      $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
  424:      $                           A( J+1, J ), 1 )
  425:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  426:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  427:                   END IF
  428: *
  429:   200          CONTINUE
  430: *
  431: *              Update trailing matrix, J already incremented
  432: *
  433:                IF( K+JB.LE.N ) THEN
  434:                   CALL ZHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  435:      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
  436:                END IF
  437: *
  438:   210       CONTINUE
  439: *
  440:          END IF
  441:       END IF
  442: *
  443: *     Ran to completion, A has full rank
  444: *
  445:       RANK = N
  446: *
  447:       GO TO 230
  448:   220 CONTINUE
  449: *
  450: *     Rank is the number of steps completed.  Set INFO = 1 to signal
  451: *     that the factorization cannot be used to solve a system.
  452: *
  453:       RANK = J - 1
  454:       INFO = 1
  455: *
  456:   230 CONTINUE
  457:       RETURN
  458: *
  459: *     End of ZPSTRF
  460: *
  461:       END

CVSweb interface <joel.bertrand@systella.fr>