File:  [local] / rpl / lapack / lapack / zpstrf.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:19 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZPSTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPSTRF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstrf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstrf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstrf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * )
   30: *       DOUBLE PRECISION   WORK( 2*N )
   31: *       INTEGER            PIV( N )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPSTRF computes the Cholesky factorization with complete
   41: *> pivoting of a complex Hermitian positive semidefinite matrix A.
   42: *>
   43: *> The factorization has the form
   44: *>    P**T * A * P = U**H * U ,  if UPLO = 'U',
   45: *>    P**T * A * P = L  * L**H,  if UPLO = 'L',
   46: *> where U is an upper triangular matrix and L is lower triangular, and
   47: *> P is stored as vector PIV.
   48: *>
   49: *> This algorithm does not attempt to check that A is positive
   50: *> semidefinite. This version of the algorithm calls level 3 BLAS.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the upper or lower triangular part of the
   60: *>          symmetric matrix A is stored.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   75: *>          n by n upper triangular part of A contains the upper
   76: *>          triangular part of the matrix A, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading n by n lower triangular part of A contains the lower
   79: *>          triangular part of the matrix A, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *>
   82: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   83: *>          factorization as above.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,N).
   90: *> \endverbatim
   91: *>
   92: *> \param[out] PIV
   93: *> \verbatim
   94: *>          PIV is INTEGER array, dimension (N)
   95: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] RANK
   99: *> \verbatim
  100: *>          RANK is INTEGER
  101: *>          The rank of A given by the number of steps the algorithm
  102: *>          completed.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] TOL
  106: *> \verbatim
  107: *>          TOL is DOUBLE PRECISION
  108: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109: *>          will be used. The algorithm terminates at the (K-1)st step
  110: *>          if the pivot <= TOL.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] WORK
  114: *> \verbatim
  115: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  116: *>          Work space.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  123: *>          = 0: algorithm completed successfully, and
  124: *>          > 0: the matrix A is either rank deficient with computed rank
  125: *>               as returned in RANK, or is indefinite.  See Section 7 of
  126: *>               LAPACK Working Note #161 for further information.
  127: *> \endverbatim
  128: *
  129: *  Authors:
  130: *  ========
  131: *
  132: *> \author Univ. of Tennessee 
  133: *> \author Univ. of California Berkeley 
  134: *> \author Univ. of Colorado Denver 
  135: *> \author NAG Ltd. 
  136: *
  137: *> \date November 2011
  138: *
  139: *> \ingroup complex16OTHERcomputational
  140: *
  141: *  =====================================================================
  142:       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  143: *
  144: *  -- LAPACK computational routine (version 3.4.0) --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *     November 2011
  148: *
  149: *     .. Scalar Arguments ..
  150:       DOUBLE PRECISION   TOL
  151:       INTEGER            INFO, LDA, N, RANK
  152:       CHARACTER          UPLO
  153: *     ..
  154: *     .. Array Arguments ..
  155:       COMPLEX*16         A( LDA, * )
  156:       DOUBLE PRECISION   WORK( 2*N )
  157:       INTEGER            PIV( N )
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       DOUBLE PRECISION   ONE, ZERO
  164:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  165:       COMPLEX*16         CONE
  166:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  167: *     ..
  168: *     .. Local Scalars ..
  169:       COMPLEX*16         ZTEMP
  170:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  171:       INTEGER            I, ITEMP, J, JB, K, NB, PVT
  172:       LOGICAL            UPPER
  173: *     ..
  174: *     .. External Functions ..
  175:       DOUBLE PRECISION   DLAMCH
  176:       INTEGER            ILAENV
  177:       LOGICAL            LSAME, DISNAN
  178:       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL           ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
  182:      $                   XERBLA
  183: *     ..
  184: *     .. Intrinsic Functions ..
  185:       INTRINSIC          DBLE, DCONJG, MAX, MIN, SQRT, MAXLOC
  186: *     ..
  187: *     .. Executable Statements ..
  188: *
  189: *     Test the input parameters.
  190: *
  191:       INFO = 0
  192:       UPPER = LSAME( UPLO, 'U' )
  193:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194:          INFO = -1
  195:       ELSE IF( N.LT.0 ) THEN
  196:          INFO = -2
  197:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  198:          INFO = -4
  199:       END IF
  200:       IF( INFO.NE.0 ) THEN
  201:          CALL XERBLA( 'ZPSTRF', -INFO )
  202:          RETURN
  203:       END IF
  204: *
  205: *     Quick return if possible
  206: *
  207:       IF( N.EQ.0 )
  208:      $   RETURN
  209: *
  210: *     Get block size
  211: *
  212:       NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
  213:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  214: *
  215: *        Use unblocked code
  216: *
  217:          CALL ZPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  218:      $                INFO )
  219:          GO TO 230
  220: *
  221:       ELSE
  222: *
  223: *     Initialize PIV
  224: *
  225:          DO 100 I = 1, N
  226:             PIV( I ) = I
  227:   100    CONTINUE
  228: *
  229: *     Compute stopping value
  230: *
  231:          DO 110 I = 1, N
  232:             WORK( I ) = DBLE( A( I, I ) )
  233:   110    CONTINUE
  234:          PVT = MAXLOC( WORK( 1:N ), 1 )
  235:          AJJ = DBLE( A( PVT, PVT ) )
  236:          IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
  237:             RANK = 0
  238:             INFO = 1
  239:             GO TO 230
  240:          END IF
  241: *
  242: *     Compute stopping value if not supplied
  243: *
  244:          IF( TOL.LT.ZERO ) THEN
  245:             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  246:          ELSE
  247:             DSTOP = TOL
  248:          END IF
  249: *
  250: *
  251:          IF( UPPER ) THEN
  252: *
  253: *           Compute the Cholesky factorization P**T * A * P = U**H * U
  254: *
  255:             DO 160 K = 1, N, NB
  256: *
  257: *              Account for last block not being NB wide
  258: *
  259:                JB = MIN( NB, N-K+1 )
  260: *
  261: *              Set relevant part of first half of WORK to zero,
  262: *              holds dot products
  263: *
  264:                DO 120 I = K, N
  265:                   WORK( I ) = 0
  266:   120          CONTINUE
  267: *
  268:                DO 150 J = K, K + JB - 1
  269: *
  270: *              Find pivot, test for exit, else swap rows and columns
  271: *              Update dot products, compute possible pivots which are
  272: *              stored in the second half of WORK
  273: *
  274:                   DO 130 I = J, N
  275: *
  276:                      IF( J.GT.K ) THEN
  277:                         WORK( I ) = WORK( I ) +
  278:      $                              DBLE( DCONJG( A( J-1, I ) )*
  279:      $                                    A( J-1, I ) )
  280:                      END IF
  281:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  282: *
  283:   130             CONTINUE
  284: *
  285:                   IF( J.GT.1 ) THEN
  286:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  287:                      PVT = ITEMP + J - 1
  288:                      AJJ = WORK( N+PVT )
  289:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  290:                         A( J, J ) = AJJ
  291:                         GO TO 220
  292:                      END IF
  293:                   END IF
  294: *
  295:                   IF( J.NE.PVT ) THEN
  296: *
  297: *                    Pivot OK, so can now swap pivot rows and columns
  298: *
  299:                      A( PVT, PVT ) = A( J, J )
  300:                      CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  301:                      IF( PVT.LT.N )
  302:      $                  CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  303:      $                              A( PVT, PVT+1 ), LDA )
  304:                      DO 140 I = J + 1, PVT - 1
  305:                         ZTEMP = DCONJG( A( J, I ) )
  306:                         A( J, I ) = DCONJG( A( I, PVT ) )
  307:                         A( I, PVT ) = ZTEMP
  308:   140                CONTINUE
  309:                      A( J, PVT ) = DCONJG( A( J, PVT ) )
  310: *
  311: *                    Swap dot products and PIV
  312: *
  313:                      DTEMP = WORK( J )
  314:                      WORK( J ) = WORK( PVT )
  315:                      WORK( PVT ) = DTEMP
  316:                      ITEMP = PIV( PVT )
  317:                      PIV( PVT ) = PIV( J )
  318:                      PIV( J ) = ITEMP
  319:                   END IF
  320: *
  321:                   AJJ = SQRT( AJJ )
  322:                   A( J, J ) = AJJ
  323: *
  324: *                 Compute elements J+1:N of row J.
  325: *
  326:                   IF( J.LT.N ) THEN
  327:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  328:                      CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
  329:      $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
  330:      $                           LDA )
  331:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  332:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  333:                   END IF
  334: *
  335:   150          CONTINUE
  336: *
  337: *              Update trailing matrix, J already incremented
  338: *
  339:                IF( K+JB.LE.N ) THEN
  340:                   CALL ZHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
  341:      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
  342:                END IF
  343: *
  344:   160       CONTINUE
  345: *
  346:          ELSE
  347: *
  348: *        Compute the Cholesky factorization P**T * A * P = L * L**H
  349: *
  350:             DO 210 K = 1, N, NB
  351: *
  352: *              Account for last block not being NB wide
  353: *
  354:                JB = MIN( NB, N-K+1 )
  355: *
  356: *              Set relevant part of first half of WORK to zero,
  357: *              holds dot products
  358: *
  359:                DO 170 I = K, N
  360:                   WORK( I ) = 0
  361:   170          CONTINUE
  362: *
  363:                DO 200 J = K, K + JB - 1
  364: *
  365: *              Find pivot, test for exit, else swap rows and columns
  366: *              Update dot products, compute possible pivots which are
  367: *              stored in the second half of WORK
  368: *
  369:                   DO 180 I = J, N
  370: *
  371:                      IF( J.GT.K ) THEN
  372:                         WORK( I ) = WORK( I ) +
  373:      $                              DBLE( DCONJG( A( I, J-1 ) )*
  374:      $                                    A( I, J-1 ) )
  375:                      END IF
  376:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  377: *
  378:   180             CONTINUE
  379: *
  380:                   IF( J.GT.1 ) THEN
  381:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  382:                      PVT = ITEMP + J - 1
  383:                      AJJ = WORK( N+PVT )
  384:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  385:                         A( J, J ) = AJJ
  386:                         GO TO 220
  387:                      END IF
  388:                   END IF
  389: *
  390:                   IF( J.NE.PVT ) THEN
  391: *
  392: *                    Pivot OK, so can now swap pivot rows and columns
  393: *
  394:                      A( PVT, PVT ) = A( J, J )
  395:                      CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  396:                      IF( PVT.LT.N )
  397:      $                  CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
  398:      $                              A( PVT+1, PVT ), 1 )
  399:                      DO 190 I = J + 1, PVT - 1
  400:                         ZTEMP = DCONJG( A( I, J ) )
  401:                         A( I, J ) = DCONJG( A( PVT, I ) )
  402:                         A( PVT, I ) = ZTEMP
  403:   190                CONTINUE
  404:                      A( PVT, J ) = DCONJG( A( PVT, J ) )
  405: *
  406: *
  407: *                    Swap dot products and PIV
  408: *
  409:                      DTEMP = WORK( J )
  410:                      WORK( J ) = WORK( PVT )
  411:                      WORK( PVT ) = DTEMP
  412:                      ITEMP = PIV( PVT )
  413:                      PIV( PVT ) = PIV( J )
  414:                      PIV( J ) = ITEMP
  415:                   END IF
  416: *
  417:                   AJJ = SQRT( AJJ )
  418:                   A( J, J ) = AJJ
  419: *
  420: *                 Compute elements J+1:N of column J.
  421: *
  422:                   IF( J.LT.N ) THEN
  423:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  424:                      CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
  425:      $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
  426:      $                           A( J+1, J ), 1 )
  427:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  428:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  429:                   END IF
  430: *
  431:   200          CONTINUE
  432: *
  433: *              Update trailing matrix, J already incremented
  434: *
  435:                IF( K+JB.LE.N ) THEN
  436:                   CALL ZHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  437:      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
  438:                END IF
  439: *
  440:   210       CONTINUE
  441: *
  442:          END IF
  443:       END IF
  444: *
  445: *     Ran to completion, A has full rank
  446: *
  447:       RANK = N
  448: *
  449:       GO TO 230
  450:   220 CONTINUE
  451: *
  452: *     Rank is the number of steps completed.  Set INFO = 1 to signal
  453: *     that the factorization cannot be used to solve a system.
  454: *
  455:       RANK = J - 1
  456:       INFO = 1
  457: *
  458:   230 CONTINUE
  459:       RETURN
  460: *
  461: *     End of ZPSTRF
  462: *
  463:       END

CVSweb interface <joel.bertrand@systella.fr>