File:  [local] / rpl / lapack / lapack / zpstrf.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:33 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPSTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * )
   30: *       DOUBLE PRECISION   WORK( 2*N )
   31: *       INTEGER            PIV( N )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPSTRF computes the Cholesky factorization with complete
   41: *> pivoting of a complex Hermitian positive semidefinite matrix A.
   42: *>
   43: *> The factorization has the form
   44: *>    P**T * A * P = U**H * U ,  if UPLO = 'U',
   45: *>    P**T * A * P = L  * L**H,  if UPLO = 'L',
   46: *> where U is an upper triangular matrix and L is lower triangular, and
   47: *> P is stored as vector PIV.
   48: *>
   49: *> This algorithm does not attempt to check that A is positive
   50: *> semidefinite. This version of the algorithm calls level 3 BLAS.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the upper or lower triangular part of the
   60: *>          symmetric matrix A is stored.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   75: *>          n by n upper triangular part of A contains the upper
   76: *>          triangular part of the matrix A, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading n by n lower triangular part of A contains the lower
   79: *>          triangular part of the matrix A, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *>
   82: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   83: *>          factorization as above.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,N).
   90: *> \endverbatim
   91: *>
   92: *> \param[out] PIV
   93: *> \verbatim
   94: *>          PIV is INTEGER array, dimension (N)
   95: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   96: *> \endverbatim
   97: *>
   98: *> \param[out] RANK
   99: *> \verbatim
  100: *>          RANK is INTEGER
  101: *>          The rank of A given by the number of steps the algorithm
  102: *>          completed.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] TOL
  106: *> \verbatim
  107: *>          TOL is DOUBLE PRECISION
  108: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109: *>          will be used. The algorithm terminates at the (K-1)st step
  110: *>          if the pivot <= TOL.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] WORK
  114: *> \verbatim
  115: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  116: *>          Work space.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  123: *>          = 0: algorithm completed successfully, and
  124: *>          > 0: the matrix A is either rank deficient with computed rank
  125: *>               as returned in RANK, or is not positive semidefinite. See
  126: *>               Section 7 of LAPACK Working Note #161 for further
  127: *>               information.
  128: *> \endverbatim
  129: *
  130: *  Authors:
  131: *  ========
  132: *
  133: *> \author Univ. of Tennessee
  134: *> \author Univ. of California Berkeley
  135: *> \author Univ. of Colorado Denver
  136: *> \author NAG Ltd.
  137: *
  138: *> \date December 2016
  139: *
  140: *> \ingroup complex16OTHERcomputational
  141: *
  142: *  =====================================================================
  143:       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  144: *
  145: *  -- LAPACK computational routine (version 3.7.0) --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *     December 2016
  149: *
  150: *     .. Scalar Arguments ..
  151:       DOUBLE PRECISION   TOL
  152:       INTEGER            INFO, LDA, N, RANK
  153:       CHARACTER          UPLO
  154: *     ..
  155: *     .. Array Arguments ..
  156:       COMPLEX*16         A( LDA, * )
  157:       DOUBLE PRECISION   WORK( 2*N )
  158:       INTEGER            PIV( N )
  159: *     ..
  160: *
  161: *  =====================================================================
  162: *
  163: *     .. Parameters ..
  164:       DOUBLE PRECISION   ONE, ZERO
  165:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  166:       COMPLEX*16         CONE
  167:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       COMPLEX*16         ZTEMP
  171:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  172:       INTEGER            I, ITEMP, J, JB, K, NB, PVT
  173:       LOGICAL            UPPER
  174: *     ..
  175: *     .. External Functions ..
  176:       DOUBLE PRECISION   DLAMCH
  177:       INTEGER            ILAENV
  178:       LOGICAL            LSAME, DISNAN
  179:       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
  180: *     ..
  181: *     .. External Subroutines ..
  182:       EXTERNAL           ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
  183:      $                   XERBLA
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          DBLE, DCONJG, MAX, MIN, SQRT, MAXLOC
  187: *     ..
  188: *     .. Executable Statements ..
  189: *
  190: *     Test the input parameters.
  191: *
  192:       INFO = 0
  193:       UPPER = LSAME( UPLO, 'U' )
  194:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  195:          INFO = -1
  196:       ELSE IF( N.LT.0 ) THEN
  197:          INFO = -2
  198:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  199:          INFO = -4
  200:       END IF
  201:       IF( INFO.NE.0 ) THEN
  202:          CALL XERBLA( 'ZPSTRF', -INFO )
  203:          RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible
  207: *
  208:       IF( N.EQ.0 )
  209:      $   RETURN
  210: *
  211: *     Get block size
  212: *
  213:       NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
  214:       IF( NB.LE.1 .OR. NB.GE.N ) THEN
  215: *
  216: *        Use unblocked code
  217: *
  218:          CALL ZPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  219:      $                INFO )
  220:          GO TO 230
  221: *
  222:       ELSE
  223: *
  224: *     Initialize PIV
  225: *
  226:          DO 100 I = 1, N
  227:             PIV( I ) = I
  228:   100    CONTINUE
  229: *
  230: *     Compute stopping value
  231: *
  232:          DO 110 I = 1, N
  233:             WORK( I ) = DBLE( A( I, I ) )
  234:   110    CONTINUE
  235:          PVT = MAXLOC( WORK( 1:N ), 1 )
  236:          AJJ = DBLE( A( PVT, PVT ) )
  237:          IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  238:             RANK = 0
  239:             INFO = 1
  240:             GO TO 230
  241:          END IF
  242: *
  243: *     Compute stopping value if not supplied
  244: *
  245:          IF( TOL.LT.ZERO ) THEN
  246:             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  247:          ELSE
  248:             DSTOP = TOL
  249:          END IF
  250: *
  251: *
  252:          IF( UPPER ) THEN
  253: *
  254: *           Compute the Cholesky factorization P**T * A * P = U**H * U
  255: *
  256:             DO 160 K = 1, N, NB
  257: *
  258: *              Account for last block not being NB wide
  259: *
  260:                JB = MIN( NB, N-K+1 )
  261: *
  262: *              Set relevant part of first half of WORK to zero,
  263: *              holds dot products
  264: *
  265:                DO 120 I = K, N
  266:                   WORK( I ) = 0
  267:   120          CONTINUE
  268: *
  269:                DO 150 J = K, K + JB - 1
  270: *
  271: *              Find pivot, test for exit, else swap rows and columns
  272: *              Update dot products, compute possible pivots which are
  273: *              stored in the second half of WORK
  274: *
  275:                   DO 130 I = J, N
  276: *
  277:                      IF( J.GT.K ) THEN
  278:                         WORK( I ) = WORK( I ) +
  279:      $                              DBLE( DCONJG( A( J-1, I ) )*
  280:      $                                    A( J-1, I ) )
  281:                      END IF
  282:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  283: *
  284:   130             CONTINUE
  285: *
  286:                   IF( J.GT.1 ) THEN
  287:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  288:                      PVT = ITEMP + J - 1
  289:                      AJJ = WORK( N+PVT )
  290:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  291:                         A( J, J ) = AJJ
  292:                         GO TO 220
  293:                      END IF
  294:                   END IF
  295: *
  296:                   IF( J.NE.PVT ) THEN
  297: *
  298: *                    Pivot OK, so can now swap pivot rows and columns
  299: *
  300:                      A( PVT, PVT ) = A( J, J )
  301:                      CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  302:                      IF( PVT.LT.N )
  303:      $                  CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  304:      $                              A( PVT, PVT+1 ), LDA )
  305:                      DO 140 I = J + 1, PVT - 1
  306:                         ZTEMP = DCONJG( A( J, I ) )
  307:                         A( J, I ) = DCONJG( A( I, PVT ) )
  308:                         A( I, PVT ) = ZTEMP
  309:   140                CONTINUE
  310:                      A( J, PVT ) = DCONJG( A( J, PVT ) )
  311: *
  312: *                    Swap dot products and PIV
  313: *
  314:                      DTEMP = WORK( J )
  315:                      WORK( J ) = WORK( PVT )
  316:                      WORK( PVT ) = DTEMP
  317:                      ITEMP = PIV( PVT )
  318:                      PIV( PVT ) = PIV( J )
  319:                      PIV( J ) = ITEMP
  320:                   END IF
  321: *
  322:                   AJJ = SQRT( AJJ )
  323:                   A( J, J ) = AJJ
  324: *
  325: *                 Compute elements J+1:N of row J.
  326: *
  327:                   IF( J.LT.N ) THEN
  328:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  329:                      CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
  330:      $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
  331:      $                           LDA )
  332:                      CALL ZLACGV( J-1, A( 1, J ), 1 )
  333:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  334:                   END IF
  335: *
  336:   150          CONTINUE
  337: *
  338: *              Update trailing matrix, J already incremented
  339: *
  340:                IF( K+JB.LE.N ) THEN
  341:                   CALL ZHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
  342:      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
  343:                END IF
  344: *
  345:   160       CONTINUE
  346: *
  347:          ELSE
  348: *
  349: *        Compute the Cholesky factorization P**T * A * P = L * L**H
  350: *
  351:             DO 210 K = 1, N, NB
  352: *
  353: *              Account for last block not being NB wide
  354: *
  355:                JB = MIN( NB, N-K+1 )
  356: *
  357: *              Set relevant part of first half of WORK to zero,
  358: *              holds dot products
  359: *
  360:                DO 170 I = K, N
  361:                   WORK( I ) = 0
  362:   170          CONTINUE
  363: *
  364:                DO 200 J = K, K + JB - 1
  365: *
  366: *              Find pivot, test for exit, else swap rows and columns
  367: *              Update dot products, compute possible pivots which are
  368: *              stored in the second half of WORK
  369: *
  370:                   DO 180 I = J, N
  371: *
  372:                      IF( J.GT.K ) THEN
  373:                         WORK( I ) = WORK( I ) +
  374:      $                              DBLE( DCONJG( A( I, J-1 ) )*
  375:      $                                    A( I, J-1 ) )
  376:                      END IF
  377:                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  378: *
  379:   180             CONTINUE
  380: *
  381:                   IF( J.GT.1 ) THEN
  382:                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  383:                      PVT = ITEMP + J - 1
  384:                      AJJ = WORK( N+PVT )
  385:                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  386:                         A( J, J ) = AJJ
  387:                         GO TO 220
  388:                      END IF
  389:                   END IF
  390: *
  391:                   IF( J.NE.PVT ) THEN
  392: *
  393: *                    Pivot OK, so can now swap pivot rows and columns
  394: *
  395:                      A( PVT, PVT ) = A( J, J )
  396:                      CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  397:                      IF( PVT.LT.N )
  398:      $                  CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
  399:      $                              A( PVT+1, PVT ), 1 )
  400:                      DO 190 I = J + 1, PVT - 1
  401:                         ZTEMP = DCONJG( A( I, J ) )
  402:                         A( I, J ) = DCONJG( A( PVT, I ) )
  403:                         A( PVT, I ) = ZTEMP
  404:   190                CONTINUE
  405:                      A( PVT, J ) = DCONJG( A( PVT, J ) )
  406: *
  407: *
  408: *                    Swap dot products and PIV
  409: *
  410:                      DTEMP = WORK( J )
  411:                      WORK( J ) = WORK( PVT )
  412:                      WORK( PVT ) = DTEMP
  413:                      ITEMP = PIV( PVT )
  414:                      PIV( PVT ) = PIV( J )
  415:                      PIV( J ) = ITEMP
  416:                   END IF
  417: *
  418:                   AJJ = SQRT( AJJ )
  419:                   A( J, J ) = AJJ
  420: *
  421: *                 Compute elements J+1:N of column J.
  422: *
  423:                   IF( J.LT.N ) THEN
  424:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  425:                      CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
  426:      $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
  427:      $                           A( J+1, J ), 1 )
  428:                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
  429:                      CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  430:                   END IF
  431: *
  432:   200          CONTINUE
  433: *
  434: *              Update trailing matrix, J already incremented
  435: *
  436:                IF( K+JB.LE.N ) THEN
  437:                   CALL ZHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  438:      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
  439:                END IF
  440: *
  441:   210       CONTINUE
  442: *
  443:          END IF
  444:       END IF
  445: *
  446: *     Ran to completion, A has full rank
  447: *
  448:       RANK = N
  449: *
  450:       GO TO 230
  451:   220 CONTINUE
  452: *
  453: *     Rank is the number of steps completed.  Set INFO = 1 to signal
  454: *     that the factorization cannot be used to solve a system.
  455: *
  456:       RANK = J - 1
  457:       INFO = 1
  458: *
  459:   230 CONTINUE
  460:       RETURN
  461: *
  462: *     End of ZPSTRF
  463: *
  464:       END

CVSweb interface <joel.bertrand@systella.fr>