File:  [local] / rpl / lapack / lapack / zpstf2.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:35 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPSTF2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstf2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstf2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstf2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       DOUBLE PRECISION   TOL
   25: *       INTEGER            INFO, LDA, N, RANK
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * )
   30: *       DOUBLE PRECISION   WORK( 2*N )
   31: *       INTEGER            PIV( N )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPSTF2 computes the Cholesky factorization with complete
   41: *> pivoting of a complex Hermitian positive semidefinite matrix A.
   42: *>
   43: *> The factorization has the form
   44: *>    P**T * A * P = U**H * U ,  if UPLO = 'U',
   45: *>    P**T * A * P = L  * L**H,  if UPLO = 'L',
   46: *> where U is an upper triangular matrix and L is lower triangular, and
   47: *> P is stored as vector PIV.
   48: *>
   49: *> This algorithm does not attempt to check that A is positive
   50: *> semidefinite. This version of the algorithm calls level 2 BLAS.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the upper or lower triangular part of the
   60: *>          symmetric matrix A is stored.
   61: *>          = 'U':  Upper triangular
   62: *>          = 'L':  Lower triangular
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension (LDA,N)
   74: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   75: *>          n by n upper triangular part of A contains the upper
   76: *>          triangular part of the matrix A, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading n by n lower triangular part of A contains the lower
   79: *>          triangular part of the matrix A, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *>
   82: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   83: *>          factorization as above.
   84: *> \endverbatim
   85: *>
   86: *> \param[out] PIV
   87: *> \verbatim
   88: *>          PIV is INTEGER array, dimension (N)
   89: *>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
   90: *> \endverbatim
   91: *>
   92: *> \param[out] RANK
   93: *> \verbatim
   94: *>          RANK is INTEGER
   95: *>          The rank of A given by the number of steps the algorithm
   96: *>          completed.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] TOL
  100: *> \verbatim
  101: *>          TOL is DOUBLE PRECISION
  102: *>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
  103: *>          will be used. The algorithm terminates at the (K-1)st step
  104: *>          if the pivot <= TOL.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDA
  108: *> \verbatim
  109: *>          LDA is INTEGER
  110: *>          The leading dimension of the array A.  LDA >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] WORK
  114: *> \verbatim
  115: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  116: *>          Work space.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] INFO
  120: *> \verbatim
  121: *>          INFO is INTEGER
  122: *>          < 0: If INFO = -K, the K-th argument had an illegal value,
  123: *>          = 0: algorithm completed successfully, and
  124: *>          > 0: the matrix A is either rank deficient with computed rank
  125: *>               as returned in RANK, or is not positive semidefinite. See
  126: *>               Section 7 of LAPACK Working Note #161 for further
  127: *>               information.
  128: *> \endverbatim
  129: *
  130: *  Authors:
  131: *  ========
  132: *
  133: *> \author Univ. of Tennessee
  134: *> \author Univ. of California Berkeley
  135: *> \author Univ. of Colorado Denver
  136: *> \author NAG Ltd.
  137: *
  138: *> \ingroup complex16OTHERcomputational
  139: *
  140: *  =====================================================================
  141:       SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142: *
  143: *  -- LAPACK computational routine --
  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146: *
  147: *     .. Scalar Arguments ..
  148:       DOUBLE PRECISION   TOL
  149:       INTEGER            INFO, LDA, N, RANK
  150:       CHARACTER          UPLO
  151: *     ..
  152: *     .. Array Arguments ..
  153:       COMPLEX*16         A( LDA, * )
  154:       DOUBLE PRECISION   WORK( 2*N )
  155:       INTEGER            PIV( N )
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Parameters ..
  161:       DOUBLE PRECISION   ONE, ZERO
  162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163:       COMPLEX*16         CONE
  164:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  165: *     ..
  166: *     .. Local Scalars ..
  167:       COMPLEX*16         ZTEMP
  168:       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
  169:       INTEGER            I, ITEMP, J, PVT
  170:       LOGICAL            UPPER
  171: *     ..
  172: *     .. External Functions ..
  173:       DOUBLE PRECISION   DLAMCH
  174:       LOGICAL            LSAME, DISNAN
  175:       EXTERNAL           DLAMCH, LSAME, DISNAN
  176: *     ..
  177: *     .. External Subroutines ..
  178:       EXTERNAL           ZDSCAL, ZGEMV, ZLACGV, ZSWAP, XERBLA
  179: *     ..
  180: *     .. Intrinsic Functions ..
  181:       INTRINSIC          DBLE, DCONJG, MAX, SQRT
  182: *     ..
  183: *     .. Executable Statements ..
  184: *
  185: *     Test the input parameters
  186: *
  187:       INFO = 0
  188:       UPPER = LSAME( UPLO, 'U' )
  189:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  190:          INFO = -1
  191:       ELSE IF( N.LT.0 ) THEN
  192:          INFO = -2
  193:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  194:          INFO = -4
  195:       END IF
  196:       IF( INFO.NE.0 ) THEN
  197:          CALL XERBLA( 'ZPSTF2', -INFO )
  198:          RETURN
  199:       END IF
  200: *
  201: *     Quick return if possible
  202: *
  203:       IF( N.EQ.0 )
  204:      $   RETURN
  205: *
  206: *     Initialize PIV
  207: *
  208:       DO 100 I = 1, N
  209:          PIV( I ) = I
  210:   100 CONTINUE
  211: *
  212: *     Compute stopping value
  213: *
  214:       DO 110 I = 1, N
  215:          WORK( I ) = DBLE( A( I, I ) )
  216:   110 CONTINUE
  217:       PVT = MAXLOC( WORK( 1:N ), 1 )
  218:       AJJ = DBLE( A( PVT, PVT ) )
  219:       IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  220:          RANK = 0
  221:          INFO = 1
  222:          GO TO 200
  223:       END IF
  224: *
  225: *     Compute stopping value if not supplied
  226: *
  227:       IF( TOL.LT.ZERO ) THEN
  228:          DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  229:       ELSE
  230:          DSTOP = TOL
  231:       END IF
  232: *
  233: *     Set first half of WORK to zero, holds dot products
  234: *
  235:       DO 120 I = 1, N
  236:          WORK( I ) = 0
  237:   120 CONTINUE
  238: *
  239:       IF( UPPER ) THEN
  240: *
  241: *        Compute the Cholesky factorization P**T * A * P = U**H* U
  242: *
  243:          DO 150 J = 1, N
  244: *
  245: *        Find pivot, test for exit, else swap rows and columns
  246: *        Update dot products, compute possible pivots which are
  247: *        stored in the second half of WORK
  248: *
  249:             DO 130 I = J, N
  250: *
  251:                IF( J.GT.1 ) THEN
  252:                   WORK( I ) = WORK( I ) +
  253:      $                        DBLE( DCONJG( A( J-1, I ) )*
  254:      $                              A( J-1, I ) )
  255:                END IF
  256:                WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  257: *
  258:   130       CONTINUE
  259: *
  260:             IF( J.GT.1 ) THEN
  261:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  262:                PVT = ITEMP + J - 1
  263:                AJJ = WORK( N+PVT )
  264:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  265:                   A( J, J ) = AJJ
  266:                   GO TO 190
  267:                END IF
  268:             END IF
  269: *
  270:             IF( J.NE.PVT ) THEN
  271: *
  272: *              Pivot OK, so can now swap pivot rows and columns
  273: *
  274:                A( PVT, PVT ) = A( J, J )
  275:                CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  276:                IF( PVT.LT.N )
  277:      $            CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  278:      $                        A( PVT, PVT+1 ), LDA )
  279:                DO 140 I = J + 1, PVT - 1
  280:                   ZTEMP = DCONJG( A( J, I ) )
  281:                   A( J, I ) = DCONJG( A( I, PVT ) )
  282:                   A( I, PVT ) = ZTEMP
  283:   140          CONTINUE
  284:                A( J, PVT ) = DCONJG( A( J, PVT ) )
  285: *
  286: *              Swap dot products and PIV
  287: *
  288:                DTEMP = WORK( J )
  289:                WORK( J ) = WORK( PVT )
  290:                WORK( PVT ) = DTEMP
  291:                ITEMP = PIV( PVT )
  292:                PIV( PVT ) = PIV( J )
  293:                PIV( J ) = ITEMP
  294:             END IF
  295: *
  296:             AJJ = SQRT( AJJ )
  297:             A( J, J ) = AJJ
  298: *
  299: *           Compute elements J+1:N of row J
  300: *
  301:             IF( J.LT.N ) THEN
  302:                CALL ZLACGV( J-1, A( 1, J ), 1 )
  303:                CALL ZGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
  304:      $                     A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
  305:                CALL ZLACGV( J-1, A( 1, J ), 1 )
  306:                CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  307:             END IF
  308: *
  309:   150    CONTINUE
  310: *
  311:       ELSE
  312: *
  313: *        Compute the Cholesky factorization P**T * A * P = L * L**H
  314: *
  315:          DO 180 J = 1, N
  316: *
  317: *        Find pivot, test for exit, else swap rows and columns
  318: *        Update dot products, compute possible pivots which are
  319: *        stored in the second half of WORK
  320: *
  321:             DO 160 I = J, N
  322: *
  323:                IF( J.GT.1 ) THEN
  324:                   WORK( I ) = WORK( I ) +
  325:      $                        DBLE( DCONJG( A( I, J-1 ) )*
  326:      $                              A( I, J-1 ) )
  327:                END IF
  328:                WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  329: *
  330:   160       CONTINUE
  331: *
  332:             IF( J.GT.1 ) THEN
  333:                ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  334:                PVT = ITEMP + J - 1
  335:                AJJ = WORK( N+PVT )
  336:                IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  337:                   A( J, J ) = AJJ
  338:                   GO TO 190
  339:                END IF
  340:             END IF
  341: *
  342:             IF( J.NE.PVT ) THEN
  343: *
  344: *              Pivot OK, so can now swap pivot rows and columns
  345: *
  346:                A( PVT, PVT ) = A( J, J )
  347:                CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  348:                IF( PVT.LT.N )
  349:      $            CALL ZSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
  350:      $                        1 )
  351:                DO 170 I = J + 1, PVT - 1
  352:                   ZTEMP = DCONJG( A( I, J ) )
  353:                   A( I, J ) = DCONJG( A( PVT, I ) )
  354:                   A( PVT, I ) = ZTEMP
  355:   170          CONTINUE
  356:                A( PVT, J ) = DCONJG( A( PVT, J ) )
  357: *
  358: *              Swap dot products and PIV
  359: *
  360:                DTEMP = WORK( J )
  361:                WORK( J ) = WORK( PVT )
  362:                WORK( PVT ) = DTEMP
  363:                ITEMP = PIV( PVT )
  364:                PIV( PVT ) = PIV( J )
  365:                PIV( J ) = ITEMP
  366:             END IF
  367: *
  368:             AJJ = SQRT( AJJ )
  369:             A( J, J ) = AJJ
  370: *
  371: *           Compute elements J+1:N of column J
  372: *
  373:             IF( J.LT.N ) THEN
  374:                CALL ZLACGV( J-1, A( J, 1 ), LDA )
  375:                CALL ZGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
  376:      $                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
  377:                CALL ZLACGV( J-1, A( J, 1 ), LDA )
  378:                CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  379:             END IF
  380: *
  381:   180    CONTINUE
  382: *
  383:       END IF
  384: *
  385: *     Ran to completion, A has full rank
  386: *
  387:       RANK = N
  388: *
  389:       GO TO 200
  390:   190 CONTINUE
  391: *
  392: *     Rank is number of steps completed.  Set INFO = 1 to signal
  393: *     that the factorization cannot be used to solve a system.
  394: *
  395:       RANK = J - 1
  396:       INFO = 1
  397: *
  398:   200 CONTINUE
  399:       RETURN
  400: *
  401: *     End of ZPSTF2
  402: *
  403:       END

CVSweb interface <joel.bertrand@systella.fr>