File:  [local] / rpl / lapack / lapack / zppsvx.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:34 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPPSVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zppsvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zppsvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zppsvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
   22: *                          X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          EQUED, FACT, UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       DOUBLE PRECISION   RCOND
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
   31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZPPSVX uses the Cholesky factorization A = U**H * U or A = L * L**H to
   42: *> compute the solution to a complex system of linear equations
   43: *>    A * X = B,
   44: *> where A is an N-by-N Hermitian positive definite matrix stored in
   45: *> packed format and X and B are N-by-NRHS matrices.
   46: *>
   47: *> Error bounds on the solution and a condition estimate are also
   48: *> provided.
   49: *> \endverbatim
   50: *
   51: *> \par Description:
   52: *  =================
   53: *>
   54: *> \verbatim
   55: *>
   56: *> The following steps are performed:
   57: *>
   58: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   59: *>    the system:
   60: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   61: *>    Whether or not the system will be equilibrated depends on the
   62: *>    scaling of the matrix A, but if equilibration is used, A is
   63: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   64: *>
   65: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   66: *>    factor the matrix A (after equilibration if FACT = 'E') as
   67: *>       A = U**H * U ,  if UPLO = 'U', or
   68: *>       A = L * L**H,  if UPLO = 'L',
   69: *>    where U is an upper triangular matrix, L is a lower triangular
   70: *>    matrix, and **H indicates conjugate transpose.
   71: *>
   72: *> 3. If the leading i-by-i principal minor is not positive definite,
   73: *>    then the routine returns with INFO = i. Otherwise, the factored
   74: *>    form of A is used to estimate the condition number of the matrix
   75: *>    A.  If the reciprocal of the condition number is less than machine
   76: *>    precision, INFO = N+1 is returned as a warning, but the routine
   77: *>    still goes on to solve for X and compute error bounds as
   78: *>    described below.
   79: *>
   80: *> 4. The system of equations is solved for X using the factored form
   81: *>    of A.
   82: *>
   83: *> 5. Iterative refinement is applied to improve the computed solution
   84: *>    matrix and calculate error bounds and backward error estimates
   85: *>    for it.
   86: *>
   87: *> 6. If equilibration was used, the matrix X is premultiplied by
   88: *>    diag(S) so that it solves the original system before
   89: *>    equilibration.
   90: *> \endverbatim
   91: *
   92: *  Arguments:
   93: *  ==========
   94: *
   95: *> \param[in] FACT
   96: *> \verbatim
   97: *>          FACT is CHARACTER*1
   98: *>          Specifies whether or not the factored form of the matrix A is
   99: *>          supplied on entry, and if not, whether the matrix A should be
  100: *>          equilibrated before it is factored.
  101: *>          = 'F':  On entry, AFP contains the factored form of A.
  102: *>                  If EQUED = 'Y', the matrix A has been equilibrated
  103: *>                  with scaling factors given by S.  AP and AFP will not
  104: *>                  be modified.
  105: *>          = 'N':  The matrix A will be copied to AFP and factored.
  106: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  107: *>                  copied to AFP and factored.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] UPLO
  111: *> \verbatim
  112: *>          UPLO is CHARACTER*1
  113: *>          = 'U':  Upper triangle of A is stored;
  114: *>          = 'L':  Lower triangle of A is stored.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] N
  118: *> \verbatim
  119: *>          N is INTEGER
  120: *>          The number of linear equations, i.e., the order of the
  121: *>          matrix A.  N >= 0.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] NRHS
  125: *> \verbatim
  126: *>          NRHS is INTEGER
  127: *>          The number of right hand sides, i.e., the number of columns
  128: *>          of the matrices B and X.  NRHS >= 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] AP
  132: *> \verbatim
  133: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  134: *>          On entry, the upper or lower triangle of the Hermitian matrix
  135: *>          A, packed columnwise in a linear array, except if FACT = 'F'
  136: *>          and EQUED = 'Y', then A must contain the equilibrated matrix
  137: *>          diag(S)*A*diag(S).  The j-th column of A is stored in the
  138: *>          array AP as follows:
  139: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  140: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  141: *>          See below for further details.  A is not modified if
  142: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  143: *>
  144: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  145: *>          diag(S)*A*diag(S).
  146: *> \endverbatim
  147: *>
  148: *> \param[in,out] AFP
  149: *> \verbatim
  150: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
  151: *>          If FACT = 'F', then AFP is an input argument and on entry
  152: *>          contains the triangular factor U or L from the Cholesky
  153: *>          factorization A = U**H*U or A = L*L**H, in the same storage
  154: *>          format as A.  If EQUED .ne. 'N', then AFP is the factored
  155: *>          form of the equilibrated matrix A.
  156: *>
  157: *>          If FACT = 'N', then AFP is an output argument and on exit
  158: *>          returns the triangular factor U or L from the Cholesky
  159: *>          factorization A = U**H * U or A = L * L**H of the original
  160: *>          matrix A.
  161: *>
  162: *>          If FACT = 'E', then AFP is an output argument and on exit
  163: *>          returns the triangular factor U or L from the Cholesky
  164: *>          factorization A = U**H * U or A = L * L**H of the equilibrated
  165: *>          matrix A (see the description of AP for the form of the
  166: *>          equilibrated matrix).
  167: *> \endverbatim
  168: *>
  169: *> \param[in,out] EQUED
  170: *> \verbatim
  171: *>          EQUED is CHARACTER*1
  172: *>          Specifies the form of equilibration that was done.
  173: *>          = 'N':  No equilibration (always true if FACT = 'N').
  174: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
  175: *>                  diag(S) * A * diag(S).
  176: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  177: *>          output argument.
  178: *> \endverbatim
  179: *>
  180: *> \param[in,out] S
  181: *> \verbatim
  182: *>          S is DOUBLE PRECISION array, dimension (N)
  183: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
  184: *>          an input argument if FACT = 'F'; otherwise, S is an output
  185: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  186: *>          must be positive.
  187: *> \endverbatim
  188: *>
  189: *> \param[in,out] B
  190: *> \verbatim
  191: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  192: *>          On entry, the N-by-NRHS right hand side matrix B.
  193: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  194: *>          B is overwritten by diag(S) * B.
  195: *> \endverbatim
  196: *>
  197: *> \param[in] LDB
  198: *> \verbatim
  199: *>          LDB is INTEGER
  200: *>          The leading dimension of the array B.  LDB >= max(1,N).
  201: *> \endverbatim
  202: *>
  203: *> \param[out] X
  204: *> \verbatim
  205: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  206: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  207: *>          the original system of equations.  Note that if EQUED = 'Y',
  208: *>          A and B are modified on exit, and the solution to the
  209: *>          equilibrated system is inv(diag(S))*X.
  210: *> \endverbatim
  211: *>
  212: *> \param[in] LDX
  213: *> \verbatim
  214: *>          LDX is INTEGER
  215: *>          The leading dimension of the array X.  LDX >= max(1,N).
  216: *> \endverbatim
  217: *>
  218: *> \param[out] RCOND
  219: *> \verbatim
  220: *>          RCOND is DOUBLE PRECISION
  221: *>          The estimate of the reciprocal condition number of the matrix
  222: *>          A after equilibration (if done).  If RCOND is less than the
  223: *>          machine precision (in particular, if RCOND = 0), the matrix
  224: *>          is singular to working precision.  This condition is
  225: *>          indicated by a return code of INFO > 0.
  226: *> \endverbatim
  227: *>
  228: *> \param[out] FERR
  229: *> \verbatim
  230: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  231: *>          The estimated forward error bound for each solution vector
  232: *>          X(j) (the j-th column of the solution matrix X).
  233: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  234: *>          is an estimated upper bound for the magnitude of the largest
  235: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  236: *>          largest element in X(j).  The estimate is as reliable as
  237: *>          the estimate for RCOND, and is almost always a slight
  238: *>          overestimate of the true error.
  239: *> \endverbatim
  240: *>
  241: *> \param[out] BERR
  242: *> \verbatim
  243: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  244: *>          The componentwise relative backward error of each solution
  245: *>          vector X(j) (i.e., the smallest relative change in
  246: *>          any element of A or B that makes X(j) an exact solution).
  247: *> \endverbatim
  248: *>
  249: *> \param[out] WORK
  250: *> \verbatim
  251: *>          WORK is COMPLEX*16 array, dimension (2*N)
  252: *> \endverbatim
  253: *>
  254: *> \param[out] RWORK
  255: *> \verbatim
  256: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  257: *> \endverbatim
  258: *>
  259: *> \param[out] INFO
  260: *> \verbatim
  261: *>          INFO is INTEGER
  262: *>          = 0:  successful exit
  263: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  264: *>          > 0:  if INFO = i, and i is
  265: *>                <= N:  the leading minor of order i of A is
  266: *>                       not positive definite, so the factorization
  267: *>                       could not be completed, and the solution has not
  268: *>                       been computed. RCOND = 0 is returned.
  269: *>                = N+1: U is nonsingular, but RCOND is less than machine
  270: *>                       precision, meaning that the matrix is singular
  271: *>                       to working precision.  Nevertheless, the
  272: *>                       solution and error bounds are computed because
  273: *>                       there are a number of situations where the
  274: *>                       computed solution can be more accurate than the
  275: *>                       value of RCOND would suggest.
  276: *> \endverbatim
  277: *
  278: *  Authors:
  279: *  ========
  280: *
  281: *> \author Univ. of Tennessee
  282: *> \author Univ. of California Berkeley
  283: *> \author Univ. of Colorado Denver
  284: *> \author NAG Ltd.
  285: *
  286: *> \ingroup complex16OTHERsolve
  287: *
  288: *> \par Further Details:
  289: *  =====================
  290: *>
  291: *> \verbatim
  292: *>
  293: *>  The packed storage scheme is illustrated by the following example
  294: *>  when N = 4, UPLO = 'U':
  295: *>
  296: *>  Two-dimensional storage of the Hermitian matrix A:
  297: *>
  298: *>     a11 a12 a13 a14
  299: *>         a22 a23 a24
  300: *>             a33 a34     (aij = conjg(aji))
  301: *>                 a44
  302: *>
  303: *>  Packed storage of the upper triangle of A:
  304: *>
  305: *>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
  306: *> \endverbatim
  307: *>
  308: *  =====================================================================
  309:       SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
  310:      $                   X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
  311: *
  312: *  -- LAPACK driver routine --
  313: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  314: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  315: *
  316: *     .. Scalar Arguments ..
  317:       CHARACTER          EQUED, FACT, UPLO
  318:       INTEGER            INFO, LDB, LDX, N, NRHS
  319:       DOUBLE PRECISION   RCOND
  320: *     ..
  321: *     .. Array Arguments ..
  322:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
  323:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  324:      $                   X( LDX, * )
  325: *     ..
  326: *
  327: *  =====================================================================
  328: *
  329: *     .. Parameters ..
  330:       DOUBLE PRECISION   ZERO, ONE
  331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  332: *     ..
  333: *     .. Local Scalars ..
  334:       LOGICAL            EQUIL, NOFACT, RCEQU
  335:       INTEGER            I, INFEQU, J
  336:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  337: *     ..
  338: *     .. External Functions ..
  339:       LOGICAL            LSAME
  340:       DOUBLE PRECISION   DLAMCH, ZLANHP
  341:       EXTERNAL           LSAME, DLAMCH, ZLANHP
  342: *     ..
  343: *     .. External Subroutines ..
  344:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHP, ZPPCON, ZPPEQU,
  345:      $                   ZPPRFS, ZPPTRF, ZPPTRS
  346: *     ..
  347: *     .. Intrinsic Functions ..
  348:       INTRINSIC          MAX, MIN
  349: *     ..
  350: *     .. Executable Statements ..
  351: *
  352:       INFO = 0
  353:       NOFACT = LSAME( FACT, 'N' )
  354:       EQUIL = LSAME( FACT, 'E' )
  355:       IF( NOFACT .OR. EQUIL ) THEN
  356:          EQUED = 'N'
  357:          RCEQU = .FALSE.
  358:       ELSE
  359:          RCEQU = LSAME( EQUED, 'Y' )
  360:          SMLNUM = DLAMCH( 'Safe minimum' )
  361:          BIGNUM = ONE / SMLNUM
  362:       END IF
  363: *
  364: *     Test the input parameters.
  365: *
  366:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  367:      $     THEN
  368:          INFO = -1
  369:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  370:      $          THEN
  371:          INFO = -2
  372:       ELSE IF( N.LT.0 ) THEN
  373:          INFO = -3
  374:       ELSE IF( NRHS.LT.0 ) THEN
  375:          INFO = -4
  376:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  377:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  378:          INFO = -7
  379:       ELSE
  380:          IF( RCEQU ) THEN
  381:             SMIN = BIGNUM
  382:             SMAX = ZERO
  383:             DO 10 J = 1, N
  384:                SMIN = MIN( SMIN, S( J ) )
  385:                SMAX = MAX( SMAX, S( J ) )
  386:    10       CONTINUE
  387:             IF( SMIN.LE.ZERO ) THEN
  388:                INFO = -8
  389:             ELSE IF( N.GT.0 ) THEN
  390:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  391:             ELSE
  392:                SCOND = ONE
  393:             END IF
  394:          END IF
  395:          IF( INFO.EQ.0 ) THEN
  396:             IF( LDB.LT.MAX( 1, N ) ) THEN
  397:                INFO = -10
  398:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  399:                INFO = -12
  400:             END IF
  401:          END IF
  402:       END IF
  403: *
  404:       IF( INFO.NE.0 ) THEN
  405:          CALL XERBLA( 'ZPPSVX', -INFO )
  406:          RETURN
  407:       END IF
  408: *
  409:       IF( EQUIL ) THEN
  410: *
  411: *        Compute row and column scalings to equilibrate the matrix A.
  412: *
  413:          CALL ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
  414:          IF( INFEQU.EQ.0 ) THEN
  415: *
  416: *           Equilibrate the matrix.
  417: *
  418:             CALL ZLAQHP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
  419:             RCEQU = LSAME( EQUED, 'Y' )
  420:          END IF
  421:       END IF
  422: *
  423: *     Scale the right-hand side.
  424: *
  425:       IF( RCEQU ) THEN
  426:          DO 30 J = 1, NRHS
  427:             DO 20 I = 1, N
  428:                B( I, J ) = S( I )*B( I, J )
  429:    20       CONTINUE
  430:    30    CONTINUE
  431:       END IF
  432: *
  433:       IF( NOFACT .OR. EQUIL ) THEN
  434: *
  435: *        Compute the Cholesky factorization A = U**H * U or A = L * L**H.
  436: *
  437:          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
  438:          CALL ZPPTRF( UPLO, N, AFP, INFO )
  439: *
  440: *        Return if INFO is non-zero.
  441: *
  442:          IF( INFO.GT.0 )THEN
  443:             RCOND = ZERO
  444:             RETURN
  445:          END IF
  446:       END IF
  447: *
  448: *     Compute the norm of the matrix A.
  449: *
  450:       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
  451: *
  452: *     Compute the reciprocal of the condition number of A.
  453: *
  454:       CALL ZPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, RWORK, INFO )
  455: *
  456: *     Compute the solution matrix X.
  457: *
  458:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  459:       CALL ZPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
  460: *
  461: *     Use iterative refinement to improve the computed solution and
  462: *     compute error bounds and backward error estimates for it.
  463: *
  464:       CALL ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
  465:      $             WORK, RWORK, INFO )
  466: *
  467: *     Transform the solution matrix X to a solution of the original
  468: *     system.
  469: *
  470:       IF( RCEQU ) THEN
  471:          DO 50 J = 1, NRHS
  472:             DO 40 I = 1, N
  473:                X( I, J ) = S( I )*X( I, J )
  474:    40       CONTINUE
  475:    50    CONTINUE
  476:          DO 60 J = 1, NRHS
  477:             FERR( J ) = FERR( J ) / SCOND
  478:    60    CONTINUE
  479:       END IF
  480: *
  481: *     Set INFO = N+1 if the matrix is singular to working precision.
  482: *
  483:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  484:      $   INFO = N + 1
  485: *
  486:       RETURN
  487: *
  488: *     End of ZPPSVX
  489: *
  490:       END

CVSweb interface <joel.bertrand@systella.fr>