Annotation of rpl/lapack/lapack/zppsvx.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> ZPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZPPSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zppsvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zppsvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zppsvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
        !            22: *                          X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          EQUED, FACT, UPLO
        !            26: *       INTEGER            INFO, LDB, LDX, N, NRHS
        !            27: *       DOUBLE PRECISION   RCOND
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
        !            31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
        !            32: *      $                   X( LDX, * )
        !            33: *       ..
        !            34: *  
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> ZPPSVX uses the Cholesky factorization A = U**H * U or A = L * L**H to
        !            42: *> compute the solution to a complex system of linear equations
        !            43: *>    A * X = B,
        !            44: *> where A is an N-by-N Hermitian positive definite matrix stored in
        !            45: *> packed format and X and B are N-by-NRHS matrices.
        !            46: *>
        !            47: *> Error bounds on the solution and a condition estimate are also
        !            48: *> provided.
        !            49: *> \endverbatim
        !            50: *
        !            51: *> \par Description:
        !            52: *  =================
        !            53: *>
        !            54: *> \verbatim
        !            55: *>
        !            56: *> The following steps are performed:
        !            57: *>
        !            58: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            59: *>    the system:
        !            60: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            61: *>    Whether or not the system will be equilibrated depends on the
        !            62: *>    scaling of the matrix A, but if equilibration is used, A is
        !            63: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            64: *>
        !            65: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            66: *>    factor the matrix A (after equilibration if FACT = 'E') as
        !            67: *>       A = U**H * U ,  if UPLO = 'U', or
        !            68: *>       A = L * L**H,  if UPLO = 'L',
        !            69: *>    where U is an upper triangular matrix, L is a lower triangular
        !            70: *>    matrix, and **H indicates conjugate transpose.
        !            71: *>
        !            72: *> 3. If the leading i-by-i principal minor is not positive definite,
        !            73: *>    then the routine returns with INFO = i. Otherwise, the factored
        !            74: *>    form of A is used to estimate the condition number of the matrix
        !            75: *>    A.  If the reciprocal of the condition number is less than machine
        !            76: *>    precision, INFO = N+1 is returned as a warning, but the routine
        !            77: *>    still goes on to solve for X and compute error bounds as
        !            78: *>    described below.
        !            79: *>
        !            80: *> 4. The system of equations is solved for X using the factored form
        !            81: *>    of A.
        !            82: *>
        !            83: *> 5. Iterative refinement is applied to improve the computed solution
        !            84: *>    matrix and calculate error bounds and backward error estimates
        !            85: *>    for it.
        !            86: *>
        !            87: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            88: *>    diag(S) so that it solves the original system before
        !            89: *>    equilibration.
        !            90: *> \endverbatim
        !            91: *
        !            92: *  Arguments:
        !            93: *  ==========
        !            94: *
        !            95: *> \param[in] FACT
        !            96: *> \verbatim
        !            97: *>          FACT is CHARACTER*1
        !            98: *>          Specifies whether or not the factored form of the matrix A is
        !            99: *>          supplied on entry, and if not, whether the matrix A should be
        !           100: *>          equilibrated before it is factored.
        !           101: *>          = 'F':  On entry, AFP contains the factored form of A.
        !           102: *>                  If EQUED = 'Y', the matrix A has been equilibrated
        !           103: *>                  with scaling factors given by S.  AP and AFP will not
        !           104: *>                  be modified.
        !           105: *>          = 'N':  The matrix A will be copied to AFP and factored.
        !           106: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           107: *>                  copied to AFP and factored.
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in] UPLO
        !           111: *> \verbatim
        !           112: *>          UPLO is CHARACTER*1
        !           113: *>          = 'U':  Upper triangle of A is stored;
        !           114: *>          = 'L':  Lower triangle of A is stored.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] N
        !           118: *> \verbatim
        !           119: *>          N is INTEGER
        !           120: *>          The number of linear equations, i.e., the order of the
        !           121: *>          matrix A.  N >= 0.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] NRHS
        !           125: *> \verbatim
        !           126: *>          NRHS is INTEGER
        !           127: *>          The number of right hand sides, i.e., the number of columns
        !           128: *>          of the matrices B and X.  NRHS >= 0.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in,out] AP
        !           132: *> \verbatim
        !           133: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
        !           134: *>          On entry, the upper or lower triangle of the Hermitian matrix
        !           135: *>          A, packed columnwise in a linear array, except if FACT = 'F'
        !           136: *>          and EQUED = 'Y', then A must contain the equilibrated matrix
        !           137: *>          diag(S)*A*diag(S).  The j-th column of A is stored in the
        !           138: *>          array AP as follows:
        !           139: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !           140: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
        !           141: *>          See below for further details.  A is not modified if
        !           142: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           143: *>
        !           144: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           145: *>          diag(S)*A*diag(S).
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[in,out] AFP
        !           149: *> \verbatim
        !           150: *>          AFP is or output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !           151: *>          If FACT = 'F', then AFP is an input argument and on entry
        !           152: *>          contains the triangular factor U or L from the Cholesky
        !           153: *>          factorization A = U**H*U or A = L*L**H, in the same storage
        !           154: *>          format as A.  If EQUED .ne. 'N', then AFP is the factored
        !           155: *>          form of the equilibrated matrix A.
        !           156: *>
        !           157: *>          If FACT = 'N', then AFP is an output argument and on exit
        !           158: *>          returns the triangular factor U or L from the Cholesky
        !           159: *>          factorization A = U**H * U or A = L * L**H of the original
        !           160: *>          matrix A.
        !           161: *>
        !           162: *>          If FACT = 'E', then AFP is an output argument and on exit
        !           163: *>          returns the triangular factor U or L from the Cholesky
        !           164: *>          factorization A = U**H * U or A = L * L**H of the equilibrated
        !           165: *>          matrix A (see the description of AP for the form of the
        !           166: *>          equilibrated matrix).
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[in,out] EQUED
        !           170: *> \verbatim
        !           171: *>          EQUED is or output) CHARACTER*1
        !           172: *>          Specifies the form of equilibration that was done.
        !           173: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           174: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           175: *>                  diag(S) * A * diag(S).
        !           176: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           177: *>          output argument.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in,out] S
        !           181: *> \verbatim
        !           182: *>          S is or output) DOUBLE PRECISION array, dimension (N)
        !           183: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           184: *>          an input argument if FACT = 'F'; otherwise, S is an output
        !           185: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           186: *>          must be positive.
        !           187: *> \endverbatim
        !           188: *>
        !           189: *> \param[in,out] B
        !           190: *> \verbatim
        !           191: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           192: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           193: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           194: *>          B is overwritten by diag(S) * B.
        !           195: *> \endverbatim
        !           196: *>
        !           197: *> \param[in] LDB
        !           198: *> \verbatim
        !           199: *>          LDB is INTEGER
        !           200: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           201: *> \endverbatim
        !           202: *>
        !           203: *> \param[out] X
        !           204: *> \verbatim
        !           205: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           206: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           207: *>          the original system of equations.  Note that if EQUED = 'Y',
        !           208: *>          A and B are modified on exit, and the solution to the
        !           209: *>          equilibrated system is inv(diag(S))*X.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[in] LDX
        !           213: *> \verbatim
        !           214: *>          LDX is INTEGER
        !           215: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[out] RCOND
        !           219: *> \verbatim
        !           220: *>          RCOND is DOUBLE PRECISION
        !           221: *>          The estimate of the reciprocal condition number of the matrix
        !           222: *>          A after equilibration (if done).  If RCOND is less than the
        !           223: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           224: *>          is singular to working precision.  This condition is
        !           225: *>          indicated by a return code of INFO > 0.
        !           226: *> \endverbatim
        !           227: *>
        !           228: *> \param[out] FERR
        !           229: *> \verbatim
        !           230: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           231: *>          The estimated forward error bound for each solution vector
        !           232: *>          X(j) (the j-th column of the solution matrix X).
        !           233: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           234: *>          is an estimated upper bound for the magnitude of the largest
        !           235: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           236: *>          largest element in X(j).  The estimate is as reliable as
        !           237: *>          the estimate for RCOND, and is almost always a slight
        !           238: *>          overestimate of the true error.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[out] BERR
        !           242: *> \verbatim
        !           243: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           244: *>          The componentwise relative backward error of each solution
        !           245: *>          vector X(j) (i.e., the smallest relative change in
        !           246: *>          any element of A or B that makes X(j) an exact solution).
        !           247: *> \endverbatim
        !           248: *>
        !           249: *> \param[out] WORK
        !           250: *> \verbatim
        !           251: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           252: *> \endverbatim
        !           253: *>
        !           254: *> \param[out] RWORK
        !           255: *> \verbatim
        !           256: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           257: *> \endverbatim
        !           258: *>
        !           259: *> \param[out] INFO
        !           260: *> \verbatim
        !           261: *>          INFO is INTEGER
        !           262: *>          = 0:  successful exit
        !           263: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           264: *>          > 0:  if INFO = i, and i is
        !           265: *>                <= N:  the leading minor of order i of A is
        !           266: *>                       not positive definite, so the factorization
        !           267: *>                       could not be completed, and the solution has not
        !           268: *>                       been computed. RCOND = 0 is returned.
        !           269: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           270: *>                       precision, meaning that the matrix is singular
        !           271: *>                       to working precision.  Nevertheless, the
        !           272: *>                       solution and error bounds are computed because
        !           273: *>                       there are a number of situations where the
        !           274: *>                       computed solution can be more accurate than the
        !           275: *>                       value of RCOND would suggest.
        !           276: *> \endverbatim
        !           277: *
        !           278: *  Authors:
        !           279: *  ========
        !           280: *
        !           281: *> \author Univ. of Tennessee 
        !           282: *> \author Univ. of California Berkeley 
        !           283: *> \author Univ. of Colorado Denver 
        !           284: *> \author NAG Ltd. 
        !           285: *
        !           286: *> \date November 2011
        !           287: *
        !           288: *> \ingroup complex16OTHERsolve
        !           289: *
        !           290: *> \par Further Details:
        !           291: *  =====================
        !           292: *>
        !           293: *> \verbatim
        !           294: *>
        !           295: *>  The packed storage scheme is illustrated by the following example
        !           296: *>  when N = 4, UPLO = 'U':
        !           297: *>
        !           298: *>  Two-dimensional storage of the Hermitian matrix A:
        !           299: *>
        !           300: *>     a11 a12 a13 a14
        !           301: *>         a22 a23 a24
        !           302: *>             a33 a34     (aij = conjg(aji))
        !           303: *>                 a44
        !           304: *>
        !           305: *>  Packed storage of the upper triangle of A:
        !           306: *>
        !           307: *>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
        !           308: *> \endverbatim
        !           309: *>
        !           310: *  =====================================================================
1.1       bertrand  311:       SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
                    312:      $                   X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
                    313: *
1.9     ! bertrand  314: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  315: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    316: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  317: *     November 2011
1.1       bertrand  318: *
                    319: *     .. Scalar Arguments ..
                    320:       CHARACTER          EQUED, FACT, UPLO
                    321:       INTEGER            INFO, LDB, LDX, N, NRHS
                    322:       DOUBLE PRECISION   RCOND
                    323: *     ..
                    324: *     .. Array Arguments ..
                    325:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                    326:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                    327:      $                   X( LDX, * )
                    328: *     ..
                    329: *
                    330: *  =====================================================================
                    331: *
                    332: *     .. Parameters ..
                    333:       DOUBLE PRECISION   ZERO, ONE
                    334:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    335: *     ..
                    336: *     .. Local Scalars ..
                    337:       LOGICAL            EQUIL, NOFACT, RCEQU
                    338:       INTEGER            I, INFEQU, J
                    339:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    340: *     ..
                    341: *     .. External Functions ..
                    342:       LOGICAL            LSAME
                    343:       DOUBLE PRECISION   DLAMCH, ZLANHP
                    344:       EXTERNAL           LSAME, DLAMCH, ZLANHP
                    345: *     ..
                    346: *     .. External Subroutines ..
                    347:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHP, ZPPCON, ZPPEQU,
                    348:      $                   ZPPRFS, ZPPTRF, ZPPTRS
                    349: *     ..
                    350: *     .. Intrinsic Functions ..
                    351:       INTRINSIC          MAX, MIN
                    352: *     ..
                    353: *     .. Executable Statements ..
                    354: *
                    355:       INFO = 0
                    356:       NOFACT = LSAME( FACT, 'N' )
                    357:       EQUIL = LSAME( FACT, 'E' )
                    358:       IF( NOFACT .OR. EQUIL ) THEN
                    359:          EQUED = 'N'
                    360:          RCEQU = .FALSE.
                    361:       ELSE
                    362:          RCEQU = LSAME( EQUED, 'Y' )
                    363:          SMLNUM = DLAMCH( 'Safe minimum' )
                    364:          BIGNUM = ONE / SMLNUM
                    365:       END IF
                    366: *
                    367: *     Test the input parameters.
                    368: *
                    369:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    370:      $     THEN
                    371:          INFO = -1
                    372:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    373:      $          THEN
                    374:          INFO = -2
                    375:       ELSE IF( N.LT.0 ) THEN
                    376:          INFO = -3
                    377:       ELSE IF( NRHS.LT.0 ) THEN
                    378:          INFO = -4
                    379:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    380:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    381:          INFO = -7
                    382:       ELSE
                    383:          IF( RCEQU ) THEN
                    384:             SMIN = BIGNUM
                    385:             SMAX = ZERO
                    386:             DO 10 J = 1, N
                    387:                SMIN = MIN( SMIN, S( J ) )
                    388:                SMAX = MAX( SMAX, S( J ) )
                    389:    10       CONTINUE
                    390:             IF( SMIN.LE.ZERO ) THEN
                    391:                INFO = -8
                    392:             ELSE IF( N.GT.0 ) THEN
                    393:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    394:             ELSE
                    395:                SCOND = ONE
                    396:             END IF
                    397:          END IF
                    398:          IF( INFO.EQ.0 ) THEN
                    399:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    400:                INFO = -10
                    401:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    402:                INFO = -12
                    403:             END IF
                    404:          END IF
                    405:       END IF
                    406: *
                    407:       IF( INFO.NE.0 ) THEN
                    408:          CALL XERBLA( 'ZPPSVX', -INFO )
                    409:          RETURN
                    410:       END IF
                    411: *
                    412:       IF( EQUIL ) THEN
                    413: *
                    414: *        Compute row and column scalings to equilibrate the matrix A.
                    415: *
                    416:          CALL ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
                    417:          IF( INFEQU.EQ.0 ) THEN
                    418: *
                    419: *           Equilibrate the matrix.
                    420: *
                    421:             CALL ZLAQHP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
                    422:             RCEQU = LSAME( EQUED, 'Y' )
                    423:          END IF
                    424:       END IF
                    425: *
                    426: *     Scale the right-hand side.
                    427: *
                    428:       IF( RCEQU ) THEN
                    429:          DO 30 J = 1, NRHS
                    430:             DO 20 I = 1, N
                    431:                B( I, J ) = S( I )*B( I, J )
                    432:    20       CONTINUE
                    433:    30    CONTINUE
                    434:       END IF
                    435: *
                    436:       IF( NOFACT .OR. EQUIL ) THEN
                    437: *
1.8       bertrand  438: *        Compute the Cholesky factorization A = U**H * U or A = L * L**H.
1.1       bertrand  439: *
                    440:          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
                    441:          CALL ZPPTRF( UPLO, N, AFP, INFO )
                    442: *
                    443: *        Return if INFO is non-zero.
                    444: *
                    445:          IF( INFO.GT.0 )THEN
                    446:             RCOND = ZERO
                    447:             RETURN
                    448:          END IF
                    449:       END IF
                    450: *
                    451: *     Compute the norm of the matrix A.
                    452: *
                    453:       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
                    454: *
                    455: *     Compute the reciprocal of the condition number of A.
                    456: *
                    457:       CALL ZPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, RWORK, INFO )
                    458: *
                    459: *     Compute the solution matrix X.
                    460: *
                    461:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    462:       CALL ZPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
                    463: *
                    464: *     Use iterative refinement to improve the computed solution and
                    465: *     compute error bounds and backward error estimates for it.
                    466: *
                    467:       CALL ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
                    468:      $             WORK, RWORK, INFO )
                    469: *
                    470: *     Transform the solution matrix X to a solution of the original
                    471: *     system.
                    472: *
                    473:       IF( RCEQU ) THEN
                    474:          DO 50 J = 1, NRHS
                    475:             DO 40 I = 1, N
                    476:                X( I, J ) = S( I )*X( I, J )
                    477:    40       CONTINUE
                    478:    50    CONTINUE
                    479:          DO 60 J = 1, NRHS
                    480:             FERR( J ) = FERR( J ) / SCOND
                    481:    60    CONTINUE
                    482:       END IF
                    483: *
                    484: *     Set INFO = N+1 if the matrix is singular to working precision.
                    485: *
                    486:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    487:      $   INFO = N + 1
                    488: *
                    489:       RETURN
                    490: *
                    491: *     End of ZPPSVX
                    492: *
                    493:       END

CVSweb interface <joel.bertrand@systella.fr>