Annotation of rpl/lapack/lapack/zppsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
        !             2:      $                   X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          EQUED, FACT, UPLO
        !            11:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            12:       DOUBLE PRECISION   RCOND
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
        !            16:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
        !            17:      $                   X( LDX, * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  ZPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
        !            24: *  compute the solution to a complex system of linear equations
        !            25: *     A * X = B,
        !            26: *  where A is an N-by-N Hermitian positive definite matrix stored in
        !            27: *  packed format and X and B are N-by-NRHS matrices.
        !            28: *
        !            29: *  Error bounds on the solution and a condition estimate are also
        !            30: *  provided.
        !            31: *
        !            32: *  Description
        !            33: *  ===========
        !            34: *
        !            35: *  The following steps are performed:
        !            36: *
        !            37: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            38: *     the system:
        !            39: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            40: *     Whether or not the system will be equilibrated depends on the
        !            41: *     scaling of the matrix A, but if equilibration is used, A is
        !            42: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            43: *
        !            44: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            45: *     factor the matrix A (after equilibration if FACT = 'E') as
        !            46: *        A = U'* U ,  if UPLO = 'U', or
        !            47: *        A = L * L',  if UPLO = 'L',
        !            48: *     where U is an upper triangular matrix, L is a lower triangular
        !            49: *     matrix, and ' indicates conjugate transpose.
        !            50: *
        !            51: *  3. If the leading i-by-i principal minor is not positive definite,
        !            52: *     then the routine returns with INFO = i. Otherwise, the factored
        !            53: *     form of A is used to estimate the condition number of the matrix
        !            54: *     A.  If the reciprocal of the condition number is less than machine
        !            55: *     precision, INFO = N+1 is returned as a warning, but the routine
        !            56: *     still goes on to solve for X and compute error bounds as
        !            57: *     described below.
        !            58: *
        !            59: *  4. The system of equations is solved for X using the factored form
        !            60: *     of A.
        !            61: *
        !            62: *  5. Iterative refinement is applied to improve the computed solution
        !            63: *     matrix and calculate error bounds and backward error estimates
        !            64: *     for it.
        !            65: *
        !            66: *  6. If equilibration was used, the matrix X is premultiplied by
        !            67: *     diag(S) so that it solves the original system before
        !            68: *     equilibration.
        !            69: *
        !            70: *  Arguments
        !            71: *  =========
        !            72: *
        !            73: *  FACT    (input) CHARACTER*1
        !            74: *          Specifies whether or not the factored form of the matrix A is
        !            75: *          supplied on entry, and if not, whether the matrix A should be
        !            76: *          equilibrated before it is factored.
        !            77: *          = 'F':  On entry, AFP contains the factored form of A.
        !            78: *                  If EQUED = 'Y', the matrix A has been equilibrated
        !            79: *                  with scaling factors given by S.  AP and AFP will not
        !            80: *                  be modified.
        !            81: *          = 'N':  The matrix A will be copied to AFP and factored.
        !            82: *          = 'E':  The matrix A will be equilibrated if necessary, then
        !            83: *                  copied to AFP and factored.
        !            84: *
        !            85: *  UPLO    (input) CHARACTER*1
        !            86: *          = 'U':  Upper triangle of A is stored;
        !            87: *          = 'L':  Lower triangle of A is stored.
        !            88: *
        !            89: *  N       (input) INTEGER
        !            90: *          The number of linear equations, i.e., the order of the
        !            91: *          matrix A.  N >= 0.
        !            92: *
        !            93: *  NRHS    (input) INTEGER
        !            94: *          The number of right hand sides, i.e., the number of columns
        !            95: *          of the matrices B and X.  NRHS >= 0.
        !            96: *
        !            97: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            98: *          On entry, the upper or lower triangle of the Hermitian matrix
        !            99: *          A, packed columnwise in a linear array, except if FACT = 'F'
        !           100: *          and EQUED = 'Y', then A must contain the equilibrated matrix
        !           101: *          diag(S)*A*diag(S).  The j-th column of A is stored in the
        !           102: *          array AP as follows:
        !           103: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !           104: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
        !           105: *          See below for further details.  A is not modified if
        !           106: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
        !           107: *
        !           108: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           109: *          diag(S)*A*diag(S).
        !           110: *
        !           111: *  AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
        !           112: *          If FACT = 'F', then AFP is an input argument and on entry
        !           113: *          contains the triangular factor U or L from the Cholesky
        !           114: *          factorization A = U**H*U or A = L*L**H, in the same storage
        !           115: *          format as A.  If EQUED .ne. 'N', then AFP is the factored
        !           116: *          form of the equilibrated matrix A.
        !           117: *
        !           118: *          If FACT = 'N', then AFP is an output argument and on exit
        !           119: *          returns the triangular factor U or L from the Cholesky
        !           120: *          factorization A = U**H*U or A = L*L**H of the original
        !           121: *          matrix A.
        !           122: *
        !           123: *          If FACT = 'E', then AFP is an output argument and on exit
        !           124: *          returns the triangular factor U or L from the Cholesky
        !           125: *          factorization A = U**H*U or A = L*L**H of the equilibrated
        !           126: *          matrix A (see the description of AP for the form of the
        !           127: *          equilibrated matrix).
        !           128: *
        !           129: *  EQUED   (input or output) CHARACTER*1
        !           130: *          Specifies the form of equilibration that was done.
        !           131: *          = 'N':  No equilibration (always true if FACT = 'N').
        !           132: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           133: *                  diag(S) * A * diag(S).
        !           134: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           135: *          output argument.
        !           136: *
        !           137: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
        !           138: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           139: *          an input argument if FACT = 'F'; otherwise, S is an output
        !           140: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           141: *          must be positive.
        !           142: *
        !           143: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
        !           144: *          On entry, the N-by-NRHS right hand side matrix B.
        !           145: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           146: *          B is overwritten by diag(S) * B.
        !           147: *
        !           148: *  LDB     (input) INTEGER
        !           149: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           150: *
        !           151: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           152: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           153: *          the original system of equations.  Note that if EQUED = 'Y',
        !           154: *          A and B are modified on exit, and the solution to the
        !           155: *          equilibrated system is inv(diag(S))*X.
        !           156: *
        !           157: *  LDX     (input) INTEGER
        !           158: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           159: *
        !           160: *  RCOND   (output) DOUBLE PRECISION
        !           161: *          The estimate of the reciprocal condition number of the matrix
        !           162: *          A after equilibration (if done).  If RCOND is less than the
        !           163: *          machine precision (in particular, if RCOND = 0), the matrix
        !           164: *          is singular to working precision.  This condition is
        !           165: *          indicated by a return code of INFO > 0.
        !           166: *
        !           167: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           168: *          The estimated forward error bound for each solution vector
        !           169: *          X(j) (the j-th column of the solution matrix X).
        !           170: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           171: *          is an estimated upper bound for the magnitude of the largest
        !           172: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           173: *          largest element in X(j).  The estimate is as reliable as
        !           174: *          the estimate for RCOND, and is almost always a slight
        !           175: *          overestimate of the true error.
        !           176: *
        !           177: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           178: *          The componentwise relative backward error of each solution
        !           179: *          vector X(j) (i.e., the smallest relative change in
        !           180: *          any element of A or B that makes X(j) an exact solution).
        !           181: *
        !           182: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           183: *
        !           184: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           185: *
        !           186: *  INFO    (output) INTEGER
        !           187: *          = 0:  successful exit
        !           188: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           189: *          > 0:  if INFO = i, and i is
        !           190: *                <= N:  the leading minor of order i of A is
        !           191: *                       not positive definite, so the factorization
        !           192: *                       could not be completed, and the solution has not
        !           193: *                       been computed. RCOND = 0 is returned.
        !           194: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           195: *                       precision, meaning that the matrix is singular
        !           196: *                       to working precision.  Nevertheless, the
        !           197: *                       solution and error bounds are computed because
        !           198: *                       there are a number of situations where the
        !           199: *                       computed solution can be more accurate than the
        !           200: *                       value of RCOND would suggest.
        !           201: *
        !           202: *  Further Details
        !           203: *  ===============
        !           204: *
        !           205: *  The packed storage scheme is illustrated by the following example
        !           206: *  when N = 4, UPLO = 'U':
        !           207: *
        !           208: *  Two-dimensional storage of the Hermitian matrix A:
        !           209: *
        !           210: *     a11 a12 a13 a14
        !           211: *         a22 a23 a24
        !           212: *             a33 a34     (aij = conjg(aji))
        !           213: *                 a44
        !           214: *
        !           215: *  Packed storage of the upper triangle of A:
        !           216: *
        !           217: *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
        !           218: *
        !           219: *  =====================================================================
        !           220: *
        !           221: *     .. Parameters ..
        !           222:       DOUBLE PRECISION   ZERO, ONE
        !           223:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           224: *     ..
        !           225: *     .. Local Scalars ..
        !           226:       LOGICAL            EQUIL, NOFACT, RCEQU
        !           227:       INTEGER            I, INFEQU, J
        !           228:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
        !           229: *     ..
        !           230: *     .. External Functions ..
        !           231:       LOGICAL            LSAME
        !           232:       DOUBLE PRECISION   DLAMCH, ZLANHP
        !           233:       EXTERNAL           LSAME, DLAMCH, ZLANHP
        !           234: *     ..
        !           235: *     .. External Subroutines ..
        !           236:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHP, ZPPCON, ZPPEQU,
        !           237:      $                   ZPPRFS, ZPPTRF, ZPPTRS
        !           238: *     ..
        !           239: *     .. Intrinsic Functions ..
        !           240:       INTRINSIC          MAX, MIN
        !           241: *     ..
        !           242: *     .. Executable Statements ..
        !           243: *
        !           244:       INFO = 0
        !           245:       NOFACT = LSAME( FACT, 'N' )
        !           246:       EQUIL = LSAME( FACT, 'E' )
        !           247:       IF( NOFACT .OR. EQUIL ) THEN
        !           248:          EQUED = 'N'
        !           249:          RCEQU = .FALSE.
        !           250:       ELSE
        !           251:          RCEQU = LSAME( EQUED, 'Y' )
        !           252:          SMLNUM = DLAMCH( 'Safe minimum' )
        !           253:          BIGNUM = ONE / SMLNUM
        !           254:       END IF
        !           255: *
        !           256: *     Test the input parameters.
        !           257: *
        !           258:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
        !           259:      $     THEN
        !           260:          INFO = -1
        !           261:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
        !           262:      $          THEN
        !           263:          INFO = -2
        !           264:       ELSE IF( N.LT.0 ) THEN
        !           265:          INFO = -3
        !           266:       ELSE IF( NRHS.LT.0 ) THEN
        !           267:          INFO = -4
        !           268:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
        !           269:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
        !           270:          INFO = -7
        !           271:       ELSE
        !           272:          IF( RCEQU ) THEN
        !           273:             SMIN = BIGNUM
        !           274:             SMAX = ZERO
        !           275:             DO 10 J = 1, N
        !           276:                SMIN = MIN( SMIN, S( J ) )
        !           277:                SMAX = MAX( SMAX, S( J ) )
        !           278:    10       CONTINUE
        !           279:             IF( SMIN.LE.ZERO ) THEN
        !           280:                INFO = -8
        !           281:             ELSE IF( N.GT.0 ) THEN
        !           282:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
        !           283:             ELSE
        !           284:                SCOND = ONE
        !           285:             END IF
        !           286:          END IF
        !           287:          IF( INFO.EQ.0 ) THEN
        !           288:             IF( LDB.LT.MAX( 1, N ) ) THEN
        !           289:                INFO = -10
        !           290:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           291:                INFO = -12
        !           292:             END IF
        !           293:          END IF
        !           294:       END IF
        !           295: *
        !           296:       IF( INFO.NE.0 ) THEN
        !           297:          CALL XERBLA( 'ZPPSVX', -INFO )
        !           298:          RETURN
        !           299:       END IF
        !           300: *
        !           301:       IF( EQUIL ) THEN
        !           302: *
        !           303: *        Compute row and column scalings to equilibrate the matrix A.
        !           304: *
        !           305:          CALL ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFEQU )
        !           306:          IF( INFEQU.EQ.0 ) THEN
        !           307: *
        !           308: *           Equilibrate the matrix.
        !           309: *
        !           310:             CALL ZLAQHP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
        !           311:             RCEQU = LSAME( EQUED, 'Y' )
        !           312:          END IF
        !           313:       END IF
        !           314: *
        !           315: *     Scale the right-hand side.
        !           316: *
        !           317:       IF( RCEQU ) THEN
        !           318:          DO 30 J = 1, NRHS
        !           319:             DO 20 I = 1, N
        !           320:                B( I, J ) = S( I )*B( I, J )
        !           321:    20       CONTINUE
        !           322:    30    CONTINUE
        !           323:       END IF
        !           324: *
        !           325:       IF( NOFACT .OR. EQUIL ) THEN
        !           326: *
        !           327: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
        !           328: *
        !           329:          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
        !           330:          CALL ZPPTRF( UPLO, N, AFP, INFO )
        !           331: *
        !           332: *        Return if INFO is non-zero.
        !           333: *
        !           334:          IF( INFO.GT.0 )THEN
        !           335:             RCOND = ZERO
        !           336:             RETURN
        !           337:          END IF
        !           338:       END IF
        !           339: *
        !           340: *     Compute the norm of the matrix A.
        !           341: *
        !           342:       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
        !           343: *
        !           344: *     Compute the reciprocal of the condition number of A.
        !           345: *
        !           346:       CALL ZPPCON( UPLO, N, AFP, ANORM, RCOND, WORK, RWORK, INFO )
        !           347: *
        !           348: *     Compute the solution matrix X.
        !           349: *
        !           350:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           351:       CALL ZPPTRS( UPLO, N, NRHS, AFP, X, LDX, INFO )
        !           352: *
        !           353: *     Use iterative refinement to improve the computed solution and
        !           354: *     compute error bounds and backward error estimates for it.
        !           355: *
        !           356:       CALL ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
        !           357:      $             WORK, RWORK, INFO )
        !           358: *
        !           359: *     Transform the solution matrix X to a solution of the original
        !           360: *     system.
        !           361: *
        !           362:       IF( RCEQU ) THEN
        !           363:          DO 50 J = 1, NRHS
        !           364:             DO 40 I = 1, N
        !           365:                X( I, J ) = S( I )*X( I, J )
        !           366:    40       CONTINUE
        !           367:    50    CONTINUE
        !           368:          DO 60 J = 1, NRHS
        !           369:             FERR( J ) = FERR( J ) / SCOND
        !           370:    60    CONTINUE
        !           371:       END IF
        !           372: *
        !           373: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           374: *
        !           375:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           376:      $   INFO = N + 1
        !           377: *
        !           378:       RETURN
        !           379: *
        !           380: *     End of ZPPSVX
        !           381: *
        !           382:       END

CVSweb interface <joel.bertrand@systella.fr>