File:  [local] / rpl / lapack / lapack / zpprfs.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:48 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
    2:      $                   BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   17:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
   18:      $                   X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZPPRFS improves the computed solution to a system of linear
   25: *  equations when the coefficient matrix is Hermitian positive definite
   26: *  and packed, and provides error bounds and backward error estimates
   27: *  for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  NRHS    (input) INTEGER
   40: *          The number of right hand sides, i.e., the number of columns
   41: *          of the matrices B and X.  NRHS >= 0.
   42: *
   43: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   44: *          The upper or lower triangle of the Hermitian matrix A, packed
   45: *          columnwise in a linear array.  The j-th column of A is stored
   46: *          in the array AP as follows:
   47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   49: *
   50: *  AFP     (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   51: *          The triangular factor U or L from the Cholesky factorization
   52: *          A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF,
   53: *          packed columnwise in a linear array in the same format as A
   54: *          (see AP).
   55: *
   56: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   57: *          The right hand side matrix B.
   58: *
   59: *  LDB     (input) INTEGER
   60: *          The leading dimension of the array B.  LDB >= max(1,N).
   61: *
   62: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
   63: *          On entry, the solution matrix X, as computed by ZPPTRS.
   64: *          On exit, the improved solution matrix X.
   65: *
   66: *  LDX     (input) INTEGER
   67: *          The leading dimension of the array X.  LDX >= max(1,N).
   68: *
   69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   70: *          The estimated forward error bound for each solution vector
   71: *          X(j) (the j-th column of the solution matrix X).
   72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   73: *          is an estimated upper bound for the magnitude of the largest
   74: *          element in (X(j) - XTRUE) divided by the magnitude of the
   75: *          largest element in X(j).  The estimate is as reliable as
   76: *          the estimate for RCOND, and is almost always a slight
   77: *          overestimate of the true error.
   78: *
   79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   80: *          The componentwise relative backward error of each solution
   81: *          vector X(j) (i.e., the smallest relative change in
   82: *          any element of A or B that makes X(j) an exact solution).
   83: *
   84: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   85: *
   86: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   87: *
   88: *  INFO    (output) INTEGER
   89: *          = 0:  successful exit
   90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   91: *
   92: *  Internal Parameters
   93: *  ===================
   94: *
   95: *  ITMAX is the maximum number of steps of iterative refinement.
   96: *
   97: *  ====================================================================
   98: *
   99: *     .. Parameters ..
  100:       INTEGER            ITMAX
  101:       PARAMETER          ( ITMAX = 5 )
  102:       DOUBLE PRECISION   ZERO
  103:       PARAMETER          ( ZERO = 0.0D+0 )
  104:       COMPLEX*16         CONE
  105:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  106:       DOUBLE PRECISION   TWO
  107:       PARAMETER          ( TWO = 2.0D+0 )
  108:       DOUBLE PRECISION   THREE
  109:       PARAMETER          ( THREE = 3.0D+0 )
  110: *     ..
  111: *     .. Local Scalars ..
  112:       LOGICAL            UPPER
  113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  115:       COMPLEX*16         ZDUM
  116: *     ..
  117: *     .. Local Arrays ..
  118:       INTEGER            ISAVE( 3 )
  119: *     ..
  120: *     .. External Subroutines ..
  121:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHPMV, ZLACN2, ZPPTRS
  122: *     ..
  123: *     .. Intrinsic Functions ..
  124:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  125: *     ..
  126: *     .. External Functions ..
  127:       LOGICAL            LSAME
  128:       DOUBLE PRECISION   DLAMCH
  129:       EXTERNAL           LSAME, DLAMCH
  130: *     ..
  131: *     .. Statement Functions ..
  132:       DOUBLE PRECISION   CABS1
  133: *     ..
  134: *     .. Statement Function definitions ..
  135:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  136: *     ..
  137: *     .. Executable Statements ..
  138: *
  139: *     Test the input parameters.
  140: *
  141:       INFO = 0
  142:       UPPER = LSAME( UPLO, 'U' )
  143:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  144:          INFO = -1
  145:       ELSE IF( N.LT.0 ) THEN
  146:          INFO = -2
  147:       ELSE IF( NRHS.LT.0 ) THEN
  148:          INFO = -3
  149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  150:          INFO = -7
  151:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  152:          INFO = -9
  153:       END IF
  154:       IF( INFO.NE.0 ) THEN
  155:          CALL XERBLA( 'ZPPRFS', -INFO )
  156:          RETURN
  157:       END IF
  158: *
  159: *     Quick return if possible
  160: *
  161:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  162:          DO 10 J = 1, NRHS
  163:             FERR( J ) = ZERO
  164:             BERR( J ) = ZERO
  165:    10    CONTINUE
  166:          RETURN
  167:       END IF
  168: *
  169: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  170: *
  171:       NZ = N + 1
  172:       EPS = DLAMCH( 'Epsilon' )
  173:       SAFMIN = DLAMCH( 'Safe minimum' )
  174:       SAFE1 = NZ*SAFMIN
  175:       SAFE2 = SAFE1 / EPS
  176: *
  177: *     Do for each right hand side
  178: *
  179:       DO 140 J = 1, NRHS
  180: *
  181:          COUNT = 1
  182:          LSTRES = THREE
  183:    20    CONTINUE
  184: *
  185: *        Loop until stopping criterion is satisfied.
  186: *
  187: *        Compute residual R = B - A * X
  188: *
  189:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  190:          CALL ZHPMV( UPLO, N, -CONE, AP, X( 1, J ), 1, CONE, WORK, 1 )
  191: *
  192: *        Compute componentwise relative backward error from formula
  193: *
  194: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  195: *
  196: *        where abs(Z) is the componentwise absolute value of the matrix
  197: *        or vector Z.  If the i-th component of the denominator is less
  198: *        than SAFE2, then SAFE1 is added to the i-th components of the
  199: *        numerator and denominator before dividing.
  200: *
  201:          DO 30 I = 1, N
  202:             RWORK( I ) = CABS1( B( I, J ) )
  203:    30    CONTINUE
  204: *
  205: *        Compute abs(A)*abs(X) + abs(B).
  206: *
  207:          KK = 1
  208:          IF( UPPER ) THEN
  209:             DO 50 K = 1, N
  210:                S = ZERO
  211:                XK = CABS1( X( K, J ) )
  212:                IK = KK
  213:                DO 40 I = 1, K - 1
  214:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  215:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  216:                   IK = IK + 1
  217:    40          CONTINUE
  218:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
  219:      $                      XK + S
  220:                KK = KK + K
  221:    50       CONTINUE
  222:          ELSE
  223:             DO 70 K = 1, N
  224:                S = ZERO
  225:                XK = CABS1( X( K, J ) )
  226:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
  227:                IK = KK + 1
  228:                DO 60 I = K + 1, N
  229:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  230:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  231:                   IK = IK + 1
  232:    60          CONTINUE
  233:                RWORK( K ) = RWORK( K ) + S
  234:                KK = KK + ( N-K+1 )
  235:    70       CONTINUE
  236:          END IF
  237:          S = ZERO
  238:          DO 80 I = 1, N
  239:             IF( RWORK( I ).GT.SAFE2 ) THEN
  240:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  241:             ELSE
  242:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  243:      $             ( RWORK( I )+SAFE1 ) )
  244:             END IF
  245:    80    CONTINUE
  246:          BERR( J ) = S
  247: *
  248: *        Test stopping criterion. Continue iterating if
  249: *           1) The residual BERR(J) is larger than machine epsilon, and
  250: *           2) BERR(J) decreased by at least a factor of 2 during the
  251: *              last iteration, and
  252: *           3) At most ITMAX iterations tried.
  253: *
  254:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  255:      $       COUNT.LE.ITMAX ) THEN
  256: *
  257: *           Update solution and try again.
  258: *
  259:             CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  260:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
  261:             LSTRES = BERR( J )
  262:             COUNT = COUNT + 1
  263:             GO TO 20
  264:          END IF
  265: *
  266: *        Bound error from formula
  267: *
  268: *        norm(X - XTRUE) / norm(X) .le. FERR =
  269: *        norm( abs(inv(A))*
  270: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  271: *
  272: *        where
  273: *          norm(Z) is the magnitude of the largest component of Z
  274: *          inv(A) is the inverse of A
  275: *          abs(Z) is the componentwise absolute value of the matrix or
  276: *             vector Z
  277: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  278: *          EPS is machine epsilon
  279: *
  280: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  281: *        is incremented by SAFE1 if the i-th component of
  282: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  283: *
  284: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  285: *           inv(A) * diag(W),
  286: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  287: *
  288:          DO 90 I = 1, N
  289:             IF( RWORK( I ).GT.SAFE2 ) THEN
  290:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  291:             ELSE
  292:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  293:      $                      SAFE1
  294:             END IF
  295:    90    CONTINUE
  296: *
  297:          KASE = 0
  298:   100    CONTINUE
  299:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  300:          IF( KASE.NE.0 ) THEN
  301:             IF( KASE.EQ.1 ) THEN
  302: *
  303: *              Multiply by diag(W)*inv(A').
  304: *
  305:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  306:                DO 110 I = 1, N
  307:                   WORK( I ) = RWORK( I )*WORK( I )
  308:   110          CONTINUE
  309:             ELSE IF( KASE.EQ.2 ) THEN
  310: *
  311: *              Multiply by inv(A)*diag(W).
  312: *
  313:                DO 120 I = 1, N
  314:                   WORK( I ) = RWORK( I )*WORK( I )
  315:   120          CONTINUE
  316:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  317:             END IF
  318:             GO TO 100
  319:          END IF
  320: *
  321: *        Normalize error.
  322: *
  323:          LSTRES = ZERO
  324:          DO 130 I = 1, N
  325:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  326:   130    CONTINUE
  327:          IF( LSTRES.NE.ZERO )
  328:      $      FERR( J ) = FERR( J ) / LSTRES
  329: *
  330:   140 CONTINUE
  331: *
  332:       RETURN
  333: *
  334: *     End of ZPPRFS
  335: *
  336:       END

CVSweb interface <joel.bertrand@systella.fr>