File:  [local] / rpl / lapack / lapack / zpprfs.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:56 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZPPRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPPRFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpprfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpprfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpprfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
   22: *                          BERR, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPPRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is Hermitian positive definite
   42: *> and packed, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] AP
   70: *> \verbatim
   71: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   72: *>          The upper or lower triangle of the Hermitian matrix A, packed
   73: *>          columnwise in a linear array.  The j-th column of A is stored
   74: *>          in the array AP as follows:
   75: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   76: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] AFP
   80: *> \verbatim
   81: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
   82: *>          The triangular factor U or L from the Cholesky factorization
   83: *>          A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF,
   84: *>          packed columnwise in a linear array in the same format as A
   85: *>          (see AP).
   86: *> \endverbatim
   87: *>
   88: *> \param[in] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          The right hand side matrix B.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDB
   95: *> \verbatim
   96: *>          LDB is INTEGER
   97: *>          The leading dimension of the array B.  LDB >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[in,out] X
  101: *> \verbatim
  102: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  103: *>          On entry, the solution matrix X, as computed by ZPPTRS.
  104: *>          On exit, the improved solution matrix X.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDX
  108: *> \verbatim
  109: *>          LDX is INTEGER
  110: *>          The leading dimension of the array X.  LDX >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] FERR
  114: *> \verbatim
  115: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  116: *>          The estimated forward error bound for each solution vector
  117: *>          X(j) (the j-th column of the solution matrix X).
  118: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  119: *>          is an estimated upper bound for the magnitude of the largest
  120: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  121: *>          largest element in X(j).  The estimate is as reliable as
  122: *>          the estimate for RCOND, and is almost always a slight
  123: *>          overestimate of the true error.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] BERR
  127: *> \verbatim
  128: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  129: *>          The componentwise relative backward error of each solution
  130: *>          vector X(j) (i.e., the smallest relative change in
  131: *>          any element of A or B that makes X(j) an exact solution).
  132: *> \endverbatim
  133: *>
  134: *> \param[out] WORK
  135: *> \verbatim
  136: *>          WORK is COMPLEX*16 array, dimension (2*N)
  137: *> \endverbatim
  138: *>
  139: *> \param[out] RWORK
  140: *> \verbatim
  141: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  142: *> \endverbatim
  143: *>
  144: *> \param[out] INFO
  145: *> \verbatim
  146: *>          INFO is INTEGER
  147: *>          = 0:  successful exit
  148: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  149: *> \endverbatim
  150: *
  151: *> \par Internal Parameters:
  152: *  =========================
  153: *>
  154: *> \verbatim
  155: *>  ITMAX is the maximum number of steps of iterative refinement.
  156: *> \endverbatim
  157: *
  158: *  Authors:
  159: *  ========
  160: *
  161: *> \author Univ. of Tennessee 
  162: *> \author Univ. of California Berkeley 
  163: *> \author Univ. of Colorado Denver 
  164: *> \author NAG Ltd. 
  165: *
  166: *> \date November 2011
  167: *
  168: *> \ingroup complex16OTHERcomputational
  169: *
  170: *  =====================================================================
  171:       SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
  172:      $                   BERR, WORK, RWORK, INFO )
  173: *
  174: *  -- LAPACK computational routine (version 3.4.0) --
  175: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  176: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177: *     November 2011
  178: *
  179: *     .. Scalar Arguments ..
  180:       CHARACTER          UPLO
  181:       INTEGER            INFO, LDB, LDX, N, NRHS
  182: *     ..
  183: *     .. Array Arguments ..
  184:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  185:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  186:      $                   X( LDX, * )
  187: *     ..
  188: *
  189: *  ====================================================================
  190: *
  191: *     .. Parameters ..
  192:       INTEGER            ITMAX
  193:       PARAMETER          ( ITMAX = 5 )
  194:       DOUBLE PRECISION   ZERO
  195:       PARAMETER          ( ZERO = 0.0D+0 )
  196:       COMPLEX*16         CONE
  197:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  198:       DOUBLE PRECISION   TWO
  199:       PARAMETER          ( TWO = 2.0D+0 )
  200:       DOUBLE PRECISION   THREE
  201:       PARAMETER          ( THREE = 3.0D+0 )
  202: *     ..
  203: *     .. Local Scalars ..
  204:       LOGICAL            UPPER
  205:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  206:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  207:       COMPLEX*16         ZDUM
  208: *     ..
  209: *     .. Local Arrays ..
  210:       INTEGER            ISAVE( 3 )
  211: *     ..
  212: *     .. External Subroutines ..
  213:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHPMV, ZLACN2, ZPPTRS
  214: *     ..
  215: *     .. Intrinsic Functions ..
  216:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  217: *     ..
  218: *     .. External Functions ..
  219:       LOGICAL            LSAME
  220:       DOUBLE PRECISION   DLAMCH
  221:       EXTERNAL           LSAME, DLAMCH
  222: *     ..
  223: *     .. Statement Functions ..
  224:       DOUBLE PRECISION   CABS1
  225: *     ..
  226: *     .. Statement Function definitions ..
  227:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  228: *     ..
  229: *     .. Executable Statements ..
  230: *
  231: *     Test the input parameters.
  232: *
  233:       INFO = 0
  234:       UPPER = LSAME( UPLO, 'U' )
  235:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  236:          INFO = -1
  237:       ELSE IF( N.LT.0 ) THEN
  238:          INFO = -2
  239:       ELSE IF( NRHS.LT.0 ) THEN
  240:          INFO = -3
  241:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  242:          INFO = -7
  243:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  244:          INFO = -9
  245:       END IF
  246:       IF( INFO.NE.0 ) THEN
  247:          CALL XERBLA( 'ZPPRFS', -INFO )
  248:          RETURN
  249:       END IF
  250: *
  251: *     Quick return if possible
  252: *
  253:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  254:          DO 10 J = 1, NRHS
  255:             FERR( J ) = ZERO
  256:             BERR( J ) = ZERO
  257:    10    CONTINUE
  258:          RETURN
  259:       END IF
  260: *
  261: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  262: *
  263:       NZ = N + 1
  264:       EPS = DLAMCH( 'Epsilon' )
  265:       SAFMIN = DLAMCH( 'Safe minimum' )
  266:       SAFE1 = NZ*SAFMIN
  267:       SAFE2 = SAFE1 / EPS
  268: *
  269: *     Do for each right hand side
  270: *
  271:       DO 140 J = 1, NRHS
  272: *
  273:          COUNT = 1
  274:          LSTRES = THREE
  275:    20    CONTINUE
  276: *
  277: *        Loop until stopping criterion is satisfied.
  278: *
  279: *        Compute residual R = B - A * X
  280: *
  281:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  282:          CALL ZHPMV( UPLO, N, -CONE, AP, X( 1, J ), 1, CONE, WORK, 1 )
  283: *
  284: *        Compute componentwise relative backward error from formula
  285: *
  286: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  287: *
  288: *        where abs(Z) is the componentwise absolute value of the matrix
  289: *        or vector Z.  If the i-th component of the denominator is less
  290: *        than SAFE2, then SAFE1 is added to the i-th components of the
  291: *        numerator and denominator before dividing.
  292: *
  293:          DO 30 I = 1, N
  294:             RWORK( I ) = CABS1( B( I, J ) )
  295:    30    CONTINUE
  296: *
  297: *        Compute abs(A)*abs(X) + abs(B).
  298: *
  299:          KK = 1
  300:          IF( UPPER ) THEN
  301:             DO 50 K = 1, N
  302:                S = ZERO
  303:                XK = CABS1( X( K, J ) )
  304:                IK = KK
  305:                DO 40 I = 1, K - 1
  306:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  307:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  308:                   IK = IK + 1
  309:    40          CONTINUE
  310:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
  311:      $                      XK + S
  312:                KK = KK + K
  313:    50       CONTINUE
  314:          ELSE
  315:             DO 70 K = 1, N
  316:                S = ZERO
  317:                XK = CABS1( X( K, J ) )
  318:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
  319:                IK = KK + 1
  320:                DO 60 I = K + 1, N
  321:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  322:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  323:                   IK = IK + 1
  324:    60          CONTINUE
  325:                RWORK( K ) = RWORK( K ) + S
  326:                KK = KK + ( N-K+1 )
  327:    70       CONTINUE
  328:          END IF
  329:          S = ZERO
  330:          DO 80 I = 1, N
  331:             IF( RWORK( I ).GT.SAFE2 ) THEN
  332:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  333:             ELSE
  334:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  335:      $             ( RWORK( I )+SAFE1 ) )
  336:             END IF
  337:    80    CONTINUE
  338:          BERR( J ) = S
  339: *
  340: *        Test stopping criterion. Continue iterating if
  341: *           1) The residual BERR(J) is larger than machine epsilon, and
  342: *           2) BERR(J) decreased by at least a factor of 2 during the
  343: *              last iteration, and
  344: *           3) At most ITMAX iterations tried.
  345: *
  346:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  347:      $       COUNT.LE.ITMAX ) THEN
  348: *
  349: *           Update solution and try again.
  350: *
  351:             CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  352:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
  353:             LSTRES = BERR( J )
  354:             COUNT = COUNT + 1
  355:             GO TO 20
  356:          END IF
  357: *
  358: *        Bound error from formula
  359: *
  360: *        norm(X - XTRUE) / norm(X) .le. FERR =
  361: *        norm( abs(inv(A))*
  362: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  363: *
  364: *        where
  365: *          norm(Z) is the magnitude of the largest component of Z
  366: *          inv(A) is the inverse of A
  367: *          abs(Z) is the componentwise absolute value of the matrix or
  368: *             vector Z
  369: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  370: *          EPS is machine epsilon
  371: *
  372: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  373: *        is incremented by SAFE1 if the i-th component of
  374: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  375: *
  376: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  377: *           inv(A) * diag(W),
  378: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  379: *
  380:          DO 90 I = 1, N
  381:             IF( RWORK( I ).GT.SAFE2 ) THEN
  382:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  383:             ELSE
  384:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  385:      $                      SAFE1
  386:             END IF
  387:    90    CONTINUE
  388: *
  389:          KASE = 0
  390:   100    CONTINUE
  391:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  392:          IF( KASE.NE.0 ) THEN
  393:             IF( KASE.EQ.1 ) THEN
  394: *
  395: *              Multiply by diag(W)*inv(A**H).
  396: *
  397:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  398:                DO 110 I = 1, N
  399:                   WORK( I ) = RWORK( I )*WORK( I )
  400:   110          CONTINUE
  401:             ELSE IF( KASE.EQ.2 ) THEN
  402: *
  403: *              Multiply by inv(A)*diag(W).
  404: *
  405:                DO 120 I = 1, N
  406:                   WORK( I ) = RWORK( I )*WORK( I )
  407:   120          CONTINUE
  408:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
  409:             END IF
  410:             GO TO 100
  411:          END IF
  412: *
  413: *        Normalize error.
  414: *
  415:          LSTRES = ZERO
  416:          DO 130 I = 1, N
  417:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  418:   130    CONTINUE
  419:          IF( LSTRES.NE.ZERO )
  420:      $      FERR( J ) = FERR( J ) / LSTRES
  421: *
  422:   140 CONTINUE
  423: *
  424:       RETURN
  425: *
  426: *     End of ZPPRFS
  427: *
  428:       END

CVSweb interface <joel.bertrand@systella.fr>