Annotation of rpl/lapack/lapack/zpprfs.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
                      2:      $                   BERR, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     17:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                     18:      $                   X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZPPRFS improves the computed solution to a system of linear
                     25: *  equations when the coefficient matrix is Hermitian positive definite
                     26: *  and packed, and provides error bounds and backward error estimates
                     27: *  for the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  NRHS    (input) INTEGER
                     40: *          The number of right hand sides, i.e., the number of columns
                     41: *          of the matrices B and X.  NRHS >= 0.
                     42: *
                     43: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
                     44: *          The upper or lower triangle of the Hermitian matrix A, packed
                     45: *          columnwise in a linear array.  The j-th column of A is stored
                     46: *          in the array AP as follows:
                     47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
                     49: *
                     50: *  AFP     (input) COMPLEX*16 array, dimension (N*(N+1)/2)
                     51: *          The triangular factor U or L from the Cholesky factorization
                     52: *          A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF,
                     53: *          packed columnwise in a linear array in the same format as A
                     54: *          (see AP).
                     55: *
                     56: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     57: *          The right hand side matrix B.
                     58: *
                     59: *  LDB     (input) INTEGER
                     60: *          The leading dimension of the array B.  LDB >= max(1,N).
                     61: *
                     62: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                     63: *          On entry, the solution matrix X, as computed by ZPPTRS.
                     64: *          On exit, the improved solution matrix X.
                     65: *
                     66: *  LDX     (input) INTEGER
                     67: *          The leading dimension of the array X.  LDX >= max(1,N).
                     68: *
                     69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     70: *          The estimated forward error bound for each solution vector
                     71: *          X(j) (the j-th column of the solution matrix X).
                     72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     73: *          is an estimated upper bound for the magnitude of the largest
                     74: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     75: *          largest element in X(j).  The estimate is as reliable as
                     76: *          the estimate for RCOND, and is almost always a slight
                     77: *          overestimate of the true error.
                     78: *
                     79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     80: *          The componentwise relative backward error of each solution
                     81: *          vector X(j) (i.e., the smallest relative change in
                     82: *          any element of A or B that makes X(j) an exact solution).
                     83: *
                     84: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                     85: *
                     86: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                     87: *
                     88: *  INFO    (output) INTEGER
                     89: *          = 0:  successful exit
                     90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     91: *
                     92: *  Internal Parameters
                     93: *  ===================
                     94: *
                     95: *  ITMAX is the maximum number of steps of iterative refinement.
                     96: *
                     97: *  ====================================================================
                     98: *
                     99: *     .. Parameters ..
                    100:       INTEGER            ITMAX
                    101:       PARAMETER          ( ITMAX = 5 )
                    102:       DOUBLE PRECISION   ZERO
                    103:       PARAMETER          ( ZERO = 0.0D+0 )
                    104:       COMPLEX*16         CONE
                    105:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    106:       DOUBLE PRECISION   TWO
                    107:       PARAMETER          ( TWO = 2.0D+0 )
                    108:       DOUBLE PRECISION   THREE
                    109:       PARAMETER          ( THREE = 3.0D+0 )
                    110: *     ..
                    111: *     .. Local Scalars ..
                    112:       LOGICAL            UPPER
                    113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
                    114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    115:       COMPLEX*16         ZDUM
                    116: *     ..
                    117: *     .. Local Arrays ..
                    118:       INTEGER            ISAVE( 3 )
                    119: *     ..
                    120: *     .. External Subroutines ..
                    121:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHPMV, ZLACN2, ZPPTRS
                    122: *     ..
                    123: *     .. Intrinsic Functions ..
                    124:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    125: *     ..
                    126: *     .. External Functions ..
                    127:       LOGICAL            LSAME
                    128:       DOUBLE PRECISION   DLAMCH
                    129:       EXTERNAL           LSAME, DLAMCH
                    130: *     ..
                    131: *     .. Statement Functions ..
                    132:       DOUBLE PRECISION   CABS1
                    133: *     ..
                    134: *     .. Statement Function definitions ..
                    135:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    136: *     ..
                    137: *     .. Executable Statements ..
                    138: *
                    139: *     Test the input parameters.
                    140: *
                    141:       INFO = 0
                    142:       UPPER = LSAME( UPLO, 'U' )
                    143:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    144:          INFO = -1
                    145:       ELSE IF( N.LT.0 ) THEN
                    146:          INFO = -2
                    147:       ELSE IF( NRHS.LT.0 ) THEN
                    148:          INFO = -3
                    149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    150:          INFO = -7
                    151:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    152:          INFO = -9
                    153:       END IF
                    154:       IF( INFO.NE.0 ) THEN
                    155:          CALL XERBLA( 'ZPPRFS', -INFO )
                    156:          RETURN
                    157:       END IF
                    158: *
                    159: *     Quick return if possible
                    160: *
                    161:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    162:          DO 10 J = 1, NRHS
                    163:             FERR( J ) = ZERO
                    164:             BERR( J ) = ZERO
                    165:    10    CONTINUE
                    166:          RETURN
                    167:       END IF
                    168: *
                    169: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    170: *
                    171:       NZ = N + 1
                    172:       EPS = DLAMCH( 'Epsilon' )
                    173:       SAFMIN = DLAMCH( 'Safe minimum' )
                    174:       SAFE1 = NZ*SAFMIN
                    175:       SAFE2 = SAFE1 / EPS
                    176: *
                    177: *     Do for each right hand side
                    178: *
                    179:       DO 140 J = 1, NRHS
                    180: *
                    181:          COUNT = 1
                    182:          LSTRES = THREE
                    183:    20    CONTINUE
                    184: *
                    185: *        Loop until stopping criterion is satisfied.
                    186: *
                    187: *        Compute residual R = B - A * X
                    188: *
                    189:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    190:          CALL ZHPMV( UPLO, N, -CONE, AP, X( 1, J ), 1, CONE, WORK, 1 )
                    191: *
                    192: *        Compute componentwise relative backward error from formula
                    193: *
                    194: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    195: *
                    196: *        where abs(Z) is the componentwise absolute value of the matrix
                    197: *        or vector Z.  If the i-th component of the denominator is less
                    198: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    199: *        numerator and denominator before dividing.
                    200: *
                    201:          DO 30 I = 1, N
                    202:             RWORK( I ) = CABS1( B( I, J ) )
                    203:    30    CONTINUE
                    204: *
                    205: *        Compute abs(A)*abs(X) + abs(B).
                    206: *
                    207:          KK = 1
                    208:          IF( UPPER ) THEN
                    209:             DO 50 K = 1, N
                    210:                S = ZERO
                    211:                XK = CABS1( X( K, J ) )
                    212:                IK = KK
                    213:                DO 40 I = 1, K - 1
                    214:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    215:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    216:                   IK = IK + 1
                    217:    40          CONTINUE
                    218:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
                    219:      $                      XK + S
                    220:                KK = KK + K
                    221:    50       CONTINUE
                    222:          ELSE
                    223:             DO 70 K = 1, N
                    224:                S = ZERO
                    225:                XK = CABS1( X( K, J ) )
                    226:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
                    227:                IK = KK + 1
                    228:                DO 60 I = K + 1, N
                    229:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    230:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    231:                   IK = IK + 1
                    232:    60          CONTINUE
                    233:                RWORK( K ) = RWORK( K ) + S
                    234:                KK = KK + ( N-K+1 )
                    235:    70       CONTINUE
                    236:          END IF
                    237:          S = ZERO
                    238:          DO 80 I = 1, N
                    239:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    240:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    241:             ELSE
                    242:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    243:      $             ( RWORK( I )+SAFE1 ) )
                    244:             END IF
                    245:    80    CONTINUE
                    246:          BERR( J ) = S
                    247: *
                    248: *        Test stopping criterion. Continue iterating if
                    249: *           1) The residual BERR(J) is larger than machine epsilon, and
                    250: *           2) BERR(J) decreased by at least a factor of 2 during the
                    251: *              last iteration, and
                    252: *           3) At most ITMAX iterations tried.
                    253: *
                    254:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    255:      $       COUNT.LE.ITMAX ) THEN
                    256: *
                    257: *           Update solution and try again.
                    258: *
                    259:             CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
                    260:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
                    261:             LSTRES = BERR( J )
                    262:             COUNT = COUNT + 1
                    263:             GO TO 20
                    264:          END IF
                    265: *
                    266: *        Bound error from formula
                    267: *
                    268: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    269: *        norm( abs(inv(A))*
                    270: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    271: *
                    272: *        where
                    273: *          norm(Z) is the magnitude of the largest component of Z
                    274: *          inv(A) is the inverse of A
                    275: *          abs(Z) is the componentwise absolute value of the matrix or
                    276: *             vector Z
                    277: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    278: *          EPS is machine epsilon
                    279: *
                    280: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    281: *        is incremented by SAFE1 if the i-th component of
                    282: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    283: *
                    284: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    285: *           inv(A) * diag(W),
                    286: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    287: *
                    288:          DO 90 I = 1, N
                    289:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    290:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    291:             ELSE
                    292:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    293:      $                      SAFE1
                    294:             END IF
                    295:    90    CONTINUE
                    296: *
                    297:          KASE = 0
                    298:   100    CONTINUE
                    299:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    300:          IF( KASE.NE.0 ) THEN
                    301:             IF( KASE.EQ.1 ) THEN
                    302: *
                    303: *              Multiply by diag(W)*inv(A').
                    304: *
                    305:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
                    306:                DO 110 I = 1, N
                    307:                   WORK( I ) = RWORK( I )*WORK( I )
                    308:   110          CONTINUE
                    309:             ELSE IF( KASE.EQ.2 ) THEN
                    310: *
                    311: *              Multiply by inv(A)*diag(W).
                    312: *
                    313:                DO 120 I = 1, N
                    314:                   WORK( I ) = RWORK( I )*WORK( I )
                    315:   120          CONTINUE
                    316:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
                    317:             END IF
                    318:             GO TO 100
                    319:          END IF
                    320: *
                    321: *        Normalize error.
                    322: *
                    323:          LSTRES = ZERO
                    324:          DO 130 I = 1, N
                    325:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    326:   130    CONTINUE
                    327:          IF( LSTRES.NE.ZERO )
                    328:      $      FERR( J ) = FERR( J ) / LSTRES
                    329: *
                    330:   140 CONTINUE
                    331: *
                    332:       RETURN
                    333: *
                    334: *     End of ZPPRFS
                    335: *
                    336:       END

CVSweb interface <joel.bertrand@systella.fr>