Annotation of rpl/lapack/lapack/zpprfs.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR,
        !             2:      $                   BERR, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          UPLO
        !            13:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            17:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
        !            18:      $                   X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZPPRFS improves the computed solution to a system of linear
        !            25: *  equations when the coefficient matrix is Hermitian positive definite
        !            26: *  and packed, and provides error bounds and backward error estimates
        !            27: *  for the solution.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  UPLO    (input) CHARACTER*1
        !            33: *          = 'U':  Upper triangle of A is stored;
        !            34: *          = 'L':  Lower triangle of A is stored.
        !            35: *
        !            36: *  N       (input) INTEGER
        !            37: *          The order of the matrix A.  N >= 0.
        !            38: *
        !            39: *  NRHS    (input) INTEGER
        !            40: *          The number of right hand sides, i.e., the number of columns
        !            41: *          of the matrices B and X.  NRHS >= 0.
        !            42: *
        !            43: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            44: *          The upper or lower triangle of the Hermitian matrix A, packed
        !            45: *          columnwise in a linear array.  The j-th column of A is stored
        !            46: *          in the array AP as follows:
        !            47: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            48: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
        !            49: *
        !            50: *  AFP     (input) COMPLEX*16 array, dimension (N*(N+1)/2)
        !            51: *          The triangular factor U or L from the Cholesky factorization
        !            52: *          A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF,
        !            53: *          packed columnwise in a linear array in the same format as A
        !            54: *          (see AP).
        !            55: *
        !            56: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !            57: *          The right hand side matrix B.
        !            58: *
        !            59: *  LDB     (input) INTEGER
        !            60: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            61: *
        !            62: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
        !            63: *          On entry, the solution matrix X, as computed by ZPPTRS.
        !            64: *          On exit, the improved solution matrix X.
        !            65: *
        !            66: *  LDX     (input) INTEGER
        !            67: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            68: *
        !            69: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            70: *          The estimated forward error bound for each solution vector
        !            71: *          X(j) (the j-th column of the solution matrix X).
        !            72: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !            73: *          is an estimated upper bound for the magnitude of the largest
        !            74: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !            75: *          largest element in X(j).  The estimate is as reliable as
        !            76: *          the estimate for RCOND, and is almost always a slight
        !            77: *          overestimate of the true error.
        !            78: *
        !            79: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            80: *          The componentwise relative backward error of each solution
        !            81: *          vector X(j) (i.e., the smallest relative change in
        !            82: *          any element of A or B that makes X(j) an exact solution).
        !            83: *
        !            84: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !            85: *
        !            86: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !            87: *
        !            88: *  INFO    (output) INTEGER
        !            89: *          = 0:  successful exit
        !            90: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            91: *
        !            92: *  Internal Parameters
        !            93: *  ===================
        !            94: *
        !            95: *  ITMAX is the maximum number of steps of iterative refinement.
        !            96: *
        !            97: *  ====================================================================
        !            98: *
        !            99: *     .. Parameters ..
        !           100:       INTEGER            ITMAX
        !           101:       PARAMETER          ( ITMAX = 5 )
        !           102:       DOUBLE PRECISION   ZERO
        !           103:       PARAMETER          ( ZERO = 0.0D+0 )
        !           104:       COMPLEX*16         CONE
        !           105:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
        !           106:       DOUBLE PRECISION   TWO
        !           107:       PARAMETER          ( TWO = 2.0D+0 )
        !           108:       DOUBLE PRECISION   THREE
        !           109:       PARAMETER          ( THREE = 3.0D+0 )
        !           110: *     ..
        !           111: *     .. Local Scalars ..
        !           112:       LOGICAL            UPPER
        !           113:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
        !           114:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
        !           115:       COMPLEX*16         ZDUM
        !           116: *     ..
        !           117: *     .. Local Arrays ..
        !           118:       INTEGER            ISAVE( 3 )
        !           119: *     ..
        !           120: *     .. External Subroutines ..
        !           121:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHPMV, ZLACN2, ZPPTRS
        !           122: *     ..
        !           123: *     .. Intrinsic Functions ..
        !           124:       INTRINSIC          ABS, DBLE, DIMAG, MAX
        !           125: *     ..
        !           126: *     .. External Functions ..
        !           127:       LOGICAL            LSAME
        !           128:       DOUBLE PRECISION   DLAMCH
        !           129:       EXTERNAL           LSAME, DLAMCH
        !           130: *     ..
        !           131: *     .. Statement Functions ..
        !           132:       DOUBLE PRECISION   CABS1
        !           133: *     ..
        !           134: *     .. Statement Function definitions ..
        !           135:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
        !           136: *     ..
        !           137: *     .. Executable Statements ..
        !           138: *
        !           139: *     Test the input parameters.
        !           140: *
        !           141:       INFO = 0
        !           142:       UPPER = LSAME( UPLO, 'U' )
        !           143:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           144:          INFO = -1
        !           145:       ELSE IF( N.LT.0 ) THEN
        !           146:          INFO = -2
        !           147:       ELSE IF( NRHS.LT.0 ) THEN
        !           148:          INFO = -3
        !           149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           150:          INFO = -7
        !           151:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           152:          INFO = -9
        !           153:       END IF
        !           154:       IF( INFO.NE.0 ) THEN
        !           155:          CALL XERBLA( 'ZPPRFS', -INFO )
        !           156:          RETURN
        !           157:       END IF
        !           158: *
        !           159: *     Quick return if possible
        !           160: *
        !           161:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           162:          DO 10 J = 1, NRHS
        !           163:             FERR( J ) = ZERO
        !           164:             BERR( J ) = ZERO
        !           165:    10    CONTINUE
        !           166:          RETURN
        !           167:       END IF
        !           168: *
        !           169: *     NZ = maximum number of nonzero elements in each row of A, plus 1
        !           170: *
        !           171:       NZ = N + 1
        !           172:       EPS = DLAMCH( 'Epsilon' )
        !           173:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           174:       SAFE1 = NZ*SAFMIN
        !           175:       SAFE2 = SAFE1 / EPS
        !           176: *
        !           177: *     Do for each right hand side
        !           178: *
        !           179:       DO 140 J = 1, NRHS
        !           180: *
        !           181:          COUNT = 1
        !           182:          LSTRES = THREE
        !           183:    20    CONTINUE
        !           184: *
        !           185: *        Loop until stopping criterion is satisfied.
        !           186: *
        !           187: *        Compute residual R = B - A * X
        !           188: *
        !           189:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
        !           190:          CALL ZHPMV( UPLO, N, -CONE, AP, X( 1, J ), 1, CONE, WORK, 1 )
        !           191: *
        !           192: *        Compute componentwise relative backward error from formula
        !           193: *
        !           194: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
        !           195: *
        !           196: *        where abs(Z) is the componentwise absolute value of the matrix
        !           197: *        or vector Z.  If the i-th component of the denominator is less
        !           198: *        than SAFE2, then SAFE1 is added to the i-th components of the
        !           199: *        numerator and denominator before dividing.
        !           200: *
        !           201:          DO 30 I = 1, N
        !           202:             RWORK( I ) = CABS1( B( I, J ) )
        !           203:    30    CONTINUE
        !           204: *
        !           205: *        Compute abs(A)*abs(X) + abs(B).
        !           206: *
        !           207:          KK = 1
        !           208:          IF( UPPER ) THEN
        !           209:             DO 50 K = 1, N
        !           210:                S = ZERO
        !           211:                XK = CABS1( X( K, J ) )
        !           212:                IK = KK
        !           213:                DO 40 I = 1, K - 1
        !           214:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
        !           215:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
        !           216:                   IK = IK + 1
        !           217:    40          CONTINUE
        !           218:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK+K-1 ) ) )*
        !           219:      $                      XK + S
        !           220:                KK = KK + K
        !           221:    50       CONTINUE
        !           222:          ELSE
        !           223:             DO 70 K = 1, N
        !           224:                S = ZERO
        !           225:                XK = CABS1( X( K, J ) )
        !           226:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AP( KK ) ) )*XK
        !           227:                IK = KK + 1
        !           228:                DO 60 I = K + 1, N
        !           229:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
        !           230:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
        !           231:                   IK = IK + 1
        !           232:    60          CONTINUE
        !           233:                RWORK( K ) = RWORK( K ) + S
        !           234:                KK = KK + ( N-K+1 )
        !           235:    70       CONTINUE
        !           236:          END IF
        !           237:          S = ZERO
        !           238:          DO 80 I = 1, N
        !           239:             IF( RWORK( I ).GT.SAFE2 ) THEN
        !           240:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
        !           241:             ELSE
        !           242:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
        !           243:      $             ( RWORK( I )+SAFE1 ) )
        !           244:             END IF
        !           245:    80    CONTINUE
        !           246:          BERR( J ) = S
        !           247: *
        !           248: *        Test stopping criterion. Continue iterating if
        !           249: *           1) The residual BERR(J) is larger than machine epsilon, and
        !           250: *           2) BERR(J) decreased by at least a factor of 2 during the
        !           251: *              last iteration, and
        !           252: *           3) At most ITMAX iterations tried.
        !           253: *
        !           254:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
        !           255:      $       COUNT.LE.ITMAX ) THEN
        !           256: *
        !           257: *           Update solution and try again.
        !           258: *
        !           259:             CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
        !           260:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
        !           261:             LSTRES = BERR( J )
        !           262:             COUNT = COUNT + 1
        !           263:             GO TO 20
        !           264:          END IF
        !           265: *
        !           266: *        Bound error from formula
        !           267: *
        !           268: *        norm(X - XTRUE) / norm(X) .le. FERR =
        !           269: *        norm( abs(inv(A))*
        !           270: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
        !           271: *
        !           272: *        where
        !           273: *          norm(Z) is the magnitude of the largest component of Z
        !           274: *          inv(A) is the inverse of A
        !           275: *          abs(Z) is the componentwise absolute value of the matrix or
        !           276: *             vector Z
        !           277: *          NZ is the maximum number of nonzeros in any row of A, plus 1
        !           278: *          EPS is machine epsilon
        !           279: *
        !           280: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
        !           281: *        is incremented by SAFE1 if the i-th component of
        !           282: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
        !           283: *
        !           284: *        Use ZLACN2 to estimate the infinity-norm of the matrix
        !           285: *           inv(A) * diag(W),
        !           286: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
        !           287: *
        !           288:          DO 90 I = 1, N
        !           289:             IF( RWORK( I ).GT.SAFE2 ) THEN
        !           290:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
        !           291:             ELSE
        !           292:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
        !           293:      $                      SAFE1
        !           294:             END IF
        !           295:    90    CONTINUE
        !           296: *
        !           297:          KASE = 0
        !           298:   100    CONTINUE
        !           299:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
        !           300:          IF( KASE.NE.0 ) THEN
        !           301:             IF( KASE.EQ.1 ) THEN
        !           302: *
        !           303: *              Multiply by diag(W)*inv(A').
        !           304: *
        !           305:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
        !           306:                DO 110 I = 1, N
        !           307:                   WORK( I ) = RWORK( I )*WORK( I )
        !           308:   110          CONTINUE
        !           309:             ELSE IF( KASE.EQ.2 ) THEN
        !           310: *
        !           311: *              Multiply by inv(A)*diag(W).
        !           312: *
        !           313:                DO 120 I = 1, N
        !           314:                   WORK( I ) = RWORK( I )*WORK( I )
        !           315:   120          CONTINUE
        !           316:                CALL ZPPTRS( UPLO, N, 1, AFP, WORK, N, INFO )
        !           317:             END IF
        !           318:             GO TO 100
        !           319:          END IF
        !           320: *
        !           321: *        Normalize error.
        !           322: *
        !           323:          LSTRES = ZERO
        !           324:          DO 130 I = 1, N
        !           325:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
        !           326:   130    CONTINUE
        !           327:          IF( LSTRES.NE.ZERO )
        !           328:      $      FERR( J ) = FERR( J ) / LSTRES
        !           329: *
        !           330:   140 CONTINUE
        !           331: *
        !           332:       RETURN
        !           333: *
        !           334: *     End of ZPPRFS
        !           335: *
        !           336:       END

CVSweb interface <joel.bertrand@systella.fr>