Diff for /rpl/lapack/lapack/zpotri.f between versions 1.2 and 1.16

version 1.2, 2010/04/21 13:45:37 version 1.16, 2017/06/17 11:07:00
Line 1 Line 1
   *> \brief \b ZPOTRI
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at
   *            http://www.netlib.org/lapack/explore-html/
   *
   *> \htmlonly
   *> Download ZPOTRI + dependencies
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpotri.f">
   *> [TGZ]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpotri.f">
   *> [ZIP]</a>
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpotri.f">
   *> [TXT]</a>
   *> \endhtmlonly
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO )
   *
   *       .. Scalar Arguments ..
   *       CHARACTER          UPLO
   *       INTEGER            INFO, LDA, N
   *       ..
   *       .. Array Arguments ..
   *       COMPLEX*16         A( LDA, * )
   *       ..
   *
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> ZPOTRI computes the inverse of a complex Hermitian positive definite
   *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
   *> computed by ZPOTRF.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] UPLO
   *> \verbatim
   *>          UPLO is CHARACTER*1
   *>          = 'U':  Upper triangle of A is stored;
   *>          = 'L':  Lower triangle of A is stored.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrix A.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is COMPLEX*16 array, dimension (LDA,N)
   *>          On entry, the triangular factor U or L from the Cholesky
   *>          factorization A = U**H*U or A = L*L**H, as computed by
   *>          ZPOTRF.
   *>          On exit, the upper or lower triangle of the (Hermitian)
   *>          inverse of A, overwriting the input factor U or L.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A.  LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
   *>                zero, and the inverse could not be computed.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee
   *> \author Univ. of California Berkeley
   *> \author Univ. of Colorado Denver
   *> \author NAG Ltd.
   *
   *> \date December 2016
   *
   *> \ingroup complex16POcomputational
   *
   *  =====================================================================
       SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO )        SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO )
 *  *
 *  -- LAPACK routine (version 3.2) --  *  -- LAPACK computational routine (version 3.7.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  *     December 2016
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          UPLO        CHARACTER          UPLO
Line 13 Line 108
       COMPLEX*16         A( LDA, * )        COMPLEX*16         A( LDA, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  ZPOTRI computes the inverse of a complex Hermitian positive definite  
 *  matrix A using the Cholesky factorization A = U**H*U or A = L*L**H  
 *  computed by ZPOTRF.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  UPLO    (input) CHARACTER*1  
 *          = 'U':  Upper triangle of A is stored;  
 *          = 'L':  Lower triangle of A is stored.  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrix A.  N >= 0.  
 *  
 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)  
 *          On entry, the triangular factor U or L from the Cholesky  
 *          factorization A = U**H*U or A = L*L**H, as computed by  
 *          ZPOTRF.  
 *          On exit, the upper or lower triangle of the (Hermitian)  
 *          inverse of A, overwriting the input factor U or L.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A.  LDA >= max(1,N).  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *          > 0:  if INFO = i, the (i,i) element of the factor U or L is  
 *                zero, and the inverse could not be computed.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. External Functions ..  *     .. External Functions ..
Line 86 Line 148
       IF( INFO.GT.0 )        IF( INFO.GT.0 )
      $   RETURN       $   RETURN
 *  *
 *     Form inv(U)*inv(U)' or inv(L)'*inv(L).  *     Form inv(U) * inv(U)**H or inv(L)**H * inv(L).
 *  *
       CALL ZLAUUM( UPLO, N, A, LDA, INFO )        CALL ZLAUUM( UPLO, N, A, LDA, INFO )
 *  *

Removed from v.1.2  
changed lines
  Added in v.1.16


CVSweb interface <joel.bertrand@systella.fr>