version 1.2, 2010/04/21 13:45:37
|
version 1.16, 2017/06/17 11:07:00
|
Line 1
|
Line 1
|
|
*> \brief \b ZPOTRI |
|
* |
|
* =========== DOCUMENTATION =========== |
|
* |
|
* Online html documentation available at |
|
* http://www.netlib.org/lapack/explore-html/ |
|
* |
|
*> \htmlonly |
|
*> Download ZPOTRI + dependencies |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpotri.f"> |
|
*> [TGZ]</a> |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpotri.f"> |
|
*> [ZIP]</a> |
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpotri.f"> |
|
*> [TXT]</a> |
|
*> \endhtmlonly |
|
* |
|
* Definition: |
|
* =========== |
|
* |
|
* SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO ) |
|
* |
|
* .. Scalar Arguments .. |
|
* CHARACTER UPLO |
|
* INTEGER INFO, LDA, N |
|
* .. |
|
* .. Array Arguments .. |
|
* COMPLEX*16 A( LDA, * ) |
|
* .. |
|
* |
|
* |
|
*> \par Purpose: |
|
* ============= |
|
*> |
|
*> \verbatim |
|
*> |
|
*> ZPOTRI computes the inverse of a complex Hermitian positive definite |
|
*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H |
|
*> computed by ZPOTRF. |
|
*> \endverbatim |
|
* |
|
* Arguments: |
|
* ========== |
|
* |
|
*> \param[in] UPLO |
|
*> \verbatim |
|
*> UPLO is CHARACTER*1 |
|
*> = 'U': Upper triangle of A is stored; |
|
*> = 'L': Lower triangle of A is stored. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] N |
|
*> \verbatim |
|
*> N is INTEGER |
|
*> The order of the matrix A. N >= 0. |
|
*> \endverbatim |
|
*> |
|
*> \param[in,out] A |
|
*> \verbatim |
|
*> A is COMPLEX*16 array, dimension (LDA,N) |
|
*> On entry, the triangular factor U or L from the Cholesky |
|
*> factorization A = U**H*U or A = L*L**H, as computed by |
|
*> ZPOTRF. |
|
*> On exit, the upper or lower triangle of the (Hermitian) |
|
*> inverse of A, overwriting the input factor U or L. |
|
*> \endverbatim |
|
*> |
|
*> \param[in] LDA |
|
*> \verbatim |
|
*> LDA is INTEGER |
|
*> The leading dimension of the array A. LDA >= max(1,N). |
|
*> \endverbatim |
|
*> |
|
*> \param[out] INFO |
|
*> \verbatim |
|
*> INFO is INTEGER |
|
*> = 0: successful exit |
|
*> < 0: if INFO = -i, the i-th argument had an illegal value |
|
*> > 0: if INFO = i, the (i,i) element of the factor U or L is |
|
*> zero, and the inverse could not be computed. |
|
*> \endverbatim |
|
* |
|
* Authors: |
|
* ======== |
|
* |
|
*> \author Univ. of Tennessee |
|
*> \author Univ. of California Berkeley |
|
*> \author Univ. of Colorado Denver |
|
*> \author NAG Ltd. |
|
* |
|
*> \date December 2016 |
|
* |
|
*> \ingroup complex16POcomputational |
|
* |
|
* ===================================================================== |
SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO ) |
SUBROUTINE ZPOTRI( UPLO, N, A, LDA, INFO ) |
* |
* |
* -- LAPACK routine (version 3.2) -- |
* -- LAPACK computational routine (version 3.7.0) -- |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
* November 2006 |
* December 2016 |
* |
* |
* .. Scalar Arguments .. |
* .. Scalar Arguments .. |
CHARACTER UPLO |
CHARACTER UPLO |
Line 13
|
Line 108
|
COMPLEX*16 A( LDA, * ) |
COMPLEX*16 A( LDA, * ) |
* .. |
* .. |
* |
* |
* Purpose |
|
* ======= |
|
* |
|
* ZPOTRI computes the inverse of a complex Hermitian positive definite |
|
* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H |
|
* computed by ZPOTRF. |
|
* |
|
* Arguments |
|
* ========= |
|
* |
|
* UPLO (input) CHARACTER*1 |
|
* = 'U': Upper triangle of A is stored; |
|
* = 'L': Lower triangle of A is stored. |
|
* |
|
* N (input) INTEGER |
|
* The order of the matrix A. N >= 0. |
|
* |
|
* A (input/output) COMPLEX*16 array, dimension (LDA,N) |
|
* On entry, the triangular factor U or L from the Cholesky |
|
* factorization A = U**H*U or A = L*L**H, as computed by |
|
* ZPOTRF. |
|
* On exit, the upper or lower triangle of the (Hermitian) |
|
* inverse of A, overwriting the input factor U or L. |
|
* |
|
* LDA (input) INTEGER |
|
* The leading dimension of the array A. LDA >= max(1,N). |
|
* |
|
* INFO (output) INTEGER |
|
* = 0: successful exit |
|
* < 0: if INFO = -i, the i-th argument had an illegal value |
|
* > 0: if INFO = i, the (i,i) element of the factor U or L is |
|
* zero, and the inverse could not be computed. |
|
* |
|
* ===================================================================== |
* ===================================================================== |
* |
* |
* .. External Functions .. |
* .. External Functions .. |
Line 86
|
Line 148
|
IF( INFO.GT.0 ) |
IF( INFO.GT.0 ) |
$ RETURN |
$ RETURN |
* |
* |
* Form inv(U)*inv(U)' or inv(L)'*inv(L). |
* Form inv(U) * inv(U)**H or inv(L)**H * inv(L). |
* |
* |
CALL ZLAUUM( UPLO, N, A, LDA, INFO ) |
CALL ZLAUUM( UPLO, N, A, LDA, INFO ) |
* |
* |