File:  [local] / rpl / lapack / lapack / zposvxx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:34 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZPOSVXX computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPOSVXX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvxx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvxx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvxx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
   22: *                           S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
   23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
   24: *                           NPARAMS, PARAMS, WORK, RWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          EQUED, FACT, UPLO
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND, RPVGRW
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   34: *      $                   WORK( * ), X( LDX, * )
   35: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
   36: *      $                   ERR_BNDS_NORM( NRHS, * ),
   37: *      $                   ERR_BNDS_COMP( NRHS, * )
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *>    ZPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
   47: *>    to compute the solution to a complex*16 system of linear equations
   48: *>    A * X = B, where A is an N-by-N Hermitian positive definite matrix
   49: *>    and X and B are N-by-NRHS matrices.
   50: *>
   51: *>    If requested, both normwise and maximum componentwise error bounds
   52: *>    are returned. ZPOSVXX will return a solution with a tiny
   53: *>    guaranteed error (O(eps) where eps is the working machine
   54: *>    precision) unless the matrix is very ill-conditioned, in which
   55: *>    case a warning is returned. Relevant condition numbers also are
   56: *>    calculated and returned.
   57: *>
   58: *>    ZPOSVXX accepts user-provided factorizations and equilibration
   59: *>    factors; see the definitions of the FACT and EQUED options.
   60: *>    Solving with refinement and using a factorization from a previous
   61: *>    ZPOSVXX call will also produce a solution with either O(eps)
   62: *>    errors or warnings, but we cannot make that claim for general
   63: *>    user-provided factorizations and equilibration factors if they
   64: *>    differ from what ZPOSVXX would itself produce.
   65: *> \endverbatim
   66: *
   67: *> \par Description:
   68: *  =================
   69: *>
   70: *> \verbatim
   71: *>
   72: *>    The following steps are performed:
   73: *>
   74: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   75: *>    the system:
   76: *>
   77: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   78: *>
   79: *>    Whether or not the system will be equilibrated depends on the
   80: *>    scaling of the matrix A, but if equilibration is used, A is
   81: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   82: *>
   83: *>    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   84: *>    factor the matrix A (after equilibration if FACT = 'E') as
   85: *>       A = U**T* U,  if UPLO = 'U', or
   86: *>       A = L * L**T,  if UPLO = 'L',
   87: *>    where U is an upper triangular matrix and L is a lower triangular
   88: *>    matrix.
   89: *>
   90: *>    3. If the leading i-by-i principal minor is not positive definite,
   91: *>    then the routine returns with INFO = i. Otherwise, the factored
   92: *>    form of A is used to estimate the condition number of the matrix
   93: *>    A (see argument RCOND).  If the reciprocal of the condition number
   94: *>    is less than machine precision, the routine still goes on to solve
   95: *>    for X and compute error bounds as described below.
   96: *>
   97: *>    4. The system of equations is solved for X using the factored form
   98: *>    of A.
   99: *>
  100: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  101: *>    the routine will use iterative refinement to try to get a small
  102: *>    error and error bounds.  Refinement calculates the residual to at
  103: *>    least twice the working precision.
  104: *>
  105: *>    6. If equilibration was used, the matrix X is premultiplied by
  106: *>    diag(S) so that it solves the original system before
  107: *>    equilibration.
  108: *> \endverbatim
  109: *
  110: *  Arguments:
  111: *  ==========
  112: *
  113: *> \verbatim
  114: *>     Some optional parameters are bundled in the PARAMS array.  These
  115: *>     settings determine how refinement is performed, but often the
  116: *>     defaults are acceptable.  If the defaults are acceptable, users
  117: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  118: *>     the PARAMS argument.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] FACT
  122: *> \verbatim
  123: *>          FACT is CHARACTER*1
  124: *>     Specifies whether or not the factored form of the matrix A is
  125: *>     supplied on entry, and if not, whether the matrix A should be
  126: *>     equilibrated before it is factored.
  127: *>       = 'F':  On entry, AF contains the factored form of A.
  128: *>               If EQUED is not 'N', the matrix A has been
  129: *>               equilibrated with scaling factors given by S.
  130: *>               A and AF are not modified.
  131: *>       = 'N':  The matrix A will be copied to AF and factored.
  132: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  133: *>               copied to AF and factored.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] UPLO
  137: *> \verbatim
  138: *>          UPLO is CHARACTER*1
  139: *>       = 'U':  Upper triangle of A is stored;
  140: *>       = 'L':  Lower triangle of A is stored.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] N
  144: *> \verbatim
  145: *>          N is INTEGER
  146: *>     The number of linear equations, i.e., the order of the
  147: *>     matrix A.  N >= 0.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] NRHS
  151: *> \verbatim
  152: *>          NRHS is INTEGER
  153: *>     The number of right hand sides, i.e., the number of columns
  154: *>     of the matrices B and X.  NRHS >= 0.
  155: *> \endverbatim
  156: *>
  157: *> \param[in,out] A
  158: *> \verbatim
  159: *>          A is COMPLEX*16 array, dimension (LDA,N)
  160: *>     On entry, the Hermitian matrix A, except if FACT = 'F' and EQUED =
  161: *>     'Y', then A must contain the equilibrated matrix
  162: *>     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
  163: *>     triangular part of A contains the upper triangular part of the
  164: *>     matrix A, and the strictly lower triangular part of A is not
  165: *>     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
  166: *>     part of A contains the lower triangular part of the matrix A, and
  167: *>     the strictly upper triangular part of A is not referenced.  A is
  168: *>     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
  169: *>     'N' on exit.
  170: *>
  171: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  172: *>     diag(S)*A*diag(S).
  173: *> \endverbatim
  174: *>
  175: *> \param[in] LDA
  176: *> \verbatim
  177: *>          LDA is INTEGER
  178: *>     The leading dimension of the array A.  LDA >= max(1,N).
  179: *> \endverbatim
  180: *>
  181: *> \param[in,out] AF
  182: *> \verbatim
  183: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  184: *>     If FACT = 'F', then AF is an input argument and on entry
  185: *>     contains the triangular factor U or L from the Cholesky
  186: *>     factorization A = U**T*U or A = L*L**T, in the same storage
  187: *>     format as A.  If EQUED .ne. 'N', then AF is the factored
  188: *>     form of the equilibrated matrix diag(S)*A*diag(S).
  189: *>
  190: *>     If FACT = 'N', then AF is an output argument and on exit
  191: *>     returns the triangular factor U or L from the Cholesky
  192: *>     factorization A = U**T*U or A = L*L**T of the original
  193: *>     matrix A.
  194: *>
  195: *>     If FACT = 'E', then AF is an output argument and on exit
  196: *>     returns the triangular factor U or L from the Cholesky
  197: *>     factorization A = U**T*U or A = L*L**T of the equilibrated
  198: *>     matrix A (see the description of A for the form of the
  199: *>     equilibrated matrix).
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDAF
  203: *> \verbatim
  204: *>          LDAF is INTEGER
  205: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[in,out] EQUED
  209: *> \verbatim
  210: *>          EQUED is CHARACTER*1
  211: *>     Specifies the form of equilibration that was done.
  212: *>       = 'N':  No equilibration (always true if FACT = 'N').
  213: *>       = 'Y':  Both row and column equilibration, i.e., A has been
  214: *>               replaced by diag(S) * A * diag(S).
  215: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  216: *>     output argument.
  217: *> \endverbatim
  218: *>
  219: *> \param[in,out] S
  220: *> \verbatim
  221: *>          S is DOUBLE PRECISION array, dimension (N)
  222: *>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
  223: *>     the left and right by diag(S).  S is an input argument if FACT =
  224: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  225: *>     = 'Y', each element of S must be positive.  If S is output, each
  226: *>     element of S is a power of the radix. If S is input, each element
  227: *>     of S should be a power of the radix to ensure a reliable solution
  228: *>     and error estimates. Scaling by powers of the radix does not cause
  229: *>     rounding errors unless the result underflows or overflows.
  230: *>     Rounding errors during scaling lead to refining with a matrix that
  231: *>     is not equivalent to the input matrix, producing error estimates
  232: *>     that may not be reliable.
  233: *> \endverbatim
  234: *>
  235: *> \param[in,out] B
  236: *> \verbatim
  237: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  238: *>     On entry, the N-by-NRHS right hand side matrix B.
  239: *>     On exit,
  240: *>     if EQUED = 'N', B is not modified;
  241: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
  242: *> \endverbatim
  243: *>
  244: *> \param[in] LDB
  245: *> \verbatim
  246: *>          LDB is INTEGER
  247: *>     The leading dimension of the array B.  LDB >= max(1,N).
  248: *> \endverbatim
  249: *>
  250: *> \param[out] X
  251: *> \verbatim
  252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  253: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  254: *>     system of equations.  Note that A and B are modified on exit if
  255: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
  256: *>     inv(diag(S))*X.
  257: *> \endverbatim
  258: *>
  259: *> \param[in] LDX
  260: *> \verbatim
  261: *>          LDX is INTEGER
  262: *>     The leading dimension of the array X.  LDX >= max(1,N).
  263: *> \endverbatim
  264: *>
  265: *> \param[out] RCOND
  266: *> \verbatim
  267: *>          RCOND is DOUBLE PRECISION
  268: *>     Reciprocal scaled condition number.  This is an estimate of the
  269: *>     reciprocal Skeel condition number of the matrix A after
  270: *>     equilibration (if done).  If this is less than the machine
  271: *>     precision (in particular, if it is zero), the matrix is singular
  272: *>     to working precision.  Note that the error may still be small even
  273: *>     if this number is very small and the matrix appears ill-
  274: *>     conditioned.
  275: *> \endverbatim
  276: *>
  277: *> \param[out] RPVGRW
  278: *> \verbatim
  279: *>          RPVGRW is DOUBLE PRECISION
  280: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  281: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  282: *>     norm is used.  If this is much less than 1, then the stability of
  283: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  284: *>     This also means that the solution X, estimated condition numbers,
  285: *>     and error bounds could be unreliable. If factorization fails with
  286: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  287: *>     for the leading INFO columns of A.
  288: *> \endverbatim
  289: *>
  290: *> \param[out] BERR
  291: *> \verbatim
  292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  293: *>     Componentwise relative backward error.  This is the
  294: *>     componentwise relative backward error of each solution vector X(j)
  295: *>     (i.e., the smallest relative change in any element of A or B that
  296: *>     makes X(j) an exact solution).
  297: *> \endverbatim
  298: *>
  299: *> \param[in] N_ERR_BNDS
  300: *> \verbatim
  301: *>          N_ERR_BNDS is INTEGER
  302: *>     Number of error bounds to return for each right hand side
  303: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  304: *>     ERR_BNDS_COMP below.
  305: *> \endverbatim
  306: *>
  307: *> \param[out] ERR_BNDS_NORM
  308: *> \verbatim
  309: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  310: *>     For each right-hand side, this array contains information about
  311: *>     various error bounds and condition numbers corresponding to the
  312: *>     normwise relative error, which is defined as follows:
  313: *>
  314: *>     Normwise relative error in the ith solution vector:
  315: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  316: *>            ------------------------------
  317: *>                  max_j abs(X(j,i))
  318: *>
  319: *>     The array is indexed by the type of error information as described
  320: *>     below. There currently are up to three pieces of information
  321: *>     returned.
  322: *>
  323: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  324: *>     right-hand side.
  325: *>
  326: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  327: *>     three fields:
  328: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  329: *>              reciprocal condition number is less than the threshold
  330: *>              sqrt(n) * dlamch('Epsilon').
  331: *>
  332: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  333: *>              almost certainly within a factor of 10 of the true error
  334: *>              so long as the next entry is greater than the threshold
  335: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  336: *>              be trusted if the previous boolean is true.
  337: *>
  338: *>     err = 3  Reciprocal condition number: Estimated normwise
  339: *>              reciprocal condition number.  Compared with the threshold
  340: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  341: *>              estimate is "guaranteed". These reciprocal condition
  342: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  343: *>              appropriately scaled matrix Z.
  344: *>              Let Z = S*A, where S scales each row by a power of the
  345: *>              radix so all absolute row sums of Z are approximately 1.
  346: *>
  347: *>     See Lapack Working Note 165 for further details and extra
  348: *>     cautions.
  349: *> \endverbatim
  350: *>
  351: *> \param[out] ERR_BNDS_COMP
  352: *> \verbatim
  353: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  354: *>     For each right-hand side, this array contains information about
  355: *>     various error bounds and condition numbers corresponding to the
  356: *>     componentwise relative error, which is defined as follows:
  357: *>
  358: *>     Componentwise relative error in the ith solution vector:
  359: *>                    abs(XTRUE(j,i) - X(j,i))
  360: *>             max_j ----------------------
  361: *>                         abs(X(j,i))
  362: *>
  363: *>     The array is indexed by the right-hand side i (on which the
  364: *>     componentwise relative error depends), and the type of error
  365: *>     information as described below. There currently are up to three
  366: *>     pieces of information returned for each right-hand side. If
  367: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  368: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  369: *>     the first (:,N_ERR_BNDS) entries are returned.
  370: *>
  371: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  372: *>     right-hand side.
  373: *>
  374: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  375: *>     three fields:
  376: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  377: *>              reciprocal condition number is less than the threshold
  378: *>              sqrt(n) * dlamch('Epsilon').
  379: *>
  380: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  381: *>              almost certainly within a factor of 10 of the true error
  382: *>              so long as the next entry is greater than the threshold
  383: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  384: *>              be trusted if the previous boolean is true.
  385: *>
  386: *>     err = 3  Reciprocal condition number: Estimated componentwise
  387: *>              reciprocal condition number.  Compared with the threshold
  388: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  389: *>              estimate is "guaranteed". These reciprocal condition
  390: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  391: *>              appropriately scaled matrix Z.
  392: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  393: *>              current right-hand side and S scales each row of
  394: *>              A*diag(x) by a power of the radix so all absolute row
  395: *>              sums of Z are approximately 1.
  396: *>
  397: *>     See Lapack Working Note 165 for further details and extra
  398: *>     cautions.
  399: *> \endverbatim
  400: *>
  401: *> \param[in] NPARAMS
  402: *> \verbatim
  403: *>          NPARAMS is INTEGER
  404: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  405: *>     PARAMS array is never referenced and default values are used.
  406: *> \endverbatim
  407: *>
  408: *> \param[in,out] PARAMS
  409: *> \verbatim
  410: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  411: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  412: *>     that entry will be filled with default value used for that
  413: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  414: *>     are used for higher-numbered parameters.
  415: *>
  416: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  417: *>            refinement or not.
  418: *>         Default: 1.0D+0
  419: *>            = 0.0:  No refinement is performed, and no error bounds are
  420: *>                    computed.
  421: *>            = 1.0:  Use the extra-precise refinement algorithm.
  422: *>              (other values are reserved for future use)
  423: *>
  424: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  425: *>            computations allowed for refinement.
  426: *>         Default: 10
  427: *>         Aggressive: Set to 100 to permit convergence using approximate
  428: *>                     factorizations or factorizations other than LU. If
  429: *>                     the factorization uses a technique other than
  430: *>                     Gaussian elimination, the guarantees in
  431: *>                     err_bnds_norm and err_bnds_comp may no longer be
  432: *>                     trustworthy.
  433: *>
  434: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  435: *>            will attempt to find a solution with small componentwise
  436: *>            relative error in the double-precision algorithm.  Positive
  437: *>            is true, 0.0 is false.
  438: *>         Default: 1.0 (attempt componentwise convergence)
  439: *> \endverbatim
  440: *>
  441: *> \param[out] WORK
  442: *> \verbatim
  443: *>          WORK is COMPLEX*16 array, dimension (2*N)
  444: *> \endverbatim
  445: *>
  446: *> \param[out] RWORK
  447: *> \verbatim
  448: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  449: *> \endverbatim
  450: *>
  451: *> \param[out] INFO
  452: *> \verbatim
  453: *>          INFO is INTEGER
  454: *>       = 0:  Successful exit. The solution to every right-hand side is
  455: *>         guaranteed.
  456: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  457: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  458: *>         has been completed, but the factor U is exactly singular, so
  459: *>         the solution and error bounds could not be computed. RCOND = 0
  460: *>         is returned.
  461: *>       = N+J: The solution corresponding to the Jth right-hand side is
  462: *>         not guaranteed. The solutions corresponding to other right-
  463: *>         hand sides K with K > J may not be guaranteed as well, but
  464: *>         only the first such right-hand side is reported. If a small
  465: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  466: *>         the Jth right-hand side is the first with a normwise error
  467: *>         bound that is not guaranteed (the smallest J such
  468: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  469: *>         the Jth right-hand side is the first with either a normwise or
  470: *>         componentwise error bound that is not guaranteed (the smallest
  471: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  472: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  473: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  474: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  475: *>         ERR_BNDS_COMP.
  476: *> \endverbatim
  477: *
  478: *  Authors:
  479: *  ========
  480: *
  481: *> \author Univ. of Tennessee
  482: *> \author Univ. of California Berkeley
  483: *> \author Univ. of Colorado Denver
  484: *> \author NAG Ltd.
  485: *
  486: *> \ingroup complex16POsolve
  487: *
  488: *  =====================================================================
  489:       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  490:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  491:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  492:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
  493: *
  494: *  -- LAPACK driver routine --
  495: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  496: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  497: *
  498: *     .. Scalar Arguments ..
  499:       CHARACTER          EQUED, FACT, UPLO
  500:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  501:      $                   N_ERR_BNDS
  502:       DOUBLE PRECISION   RCOND, RPVGRW
  503: *     ..
  504: *     .. Array Arguments ..
  505:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  506:      $                   WORK( * ), X( LDX, * )
  507:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
  508:      $                   ERR_BNDS_NORM( NRHS, * ),
  509:      $                   ERR_BNDS_COMP( NRHS, * )
  510: *     ..
  511: *
  512: *  ==================================================================
  513: *
  514: *     .. Parameters ..
  515:       DOUBLE PRECISION   ZERO, ONE
  516:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  517:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  518:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  519:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  520:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  521:      $                   BERR_I = 3 )
  522:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  523:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  524:      $                   PIV_GROWTH_I = 9 )
  525: *     ..
  526: *     .. Local Scalars ..
  527:       LOGICAL            EQUIL, NOFACT, RCEQU
  528:       INTEGER            INFEQU, J
  529:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
  530: *     ..
  531: *     .. External Functions ..
  532:       EXTERNAL           LSAME, DLAMCH, ZLA_PORPVGRW
  533:       LOGICAL            LSAME
  534:       DOUBLE PRECISION   DLAMCH, ZLA_PORPVGRW
  535: *     ..
  536: *     .. External Subroutines ..
  537:       EXTERNAL           ZPOEQUB, ZPOTRF, ZPOTRS, ZLACPY,
  538:      $                   ZLAQHE, XERBLA, ZLASCL2, ZPORFSX
  539: *     ..
  540: *     .. Intrinsic Functions ..
  541:       INTRINSIC          MAX, MIN
  542: *     ..
  543: *     .. Executable Statements ..
  544: *
  545:       INFO = 0
  546:       NOFACT = LSAME( FACT, 'N' )
  547:       EQUIL = LSAME( FACT, 'E' )
  548:       SMLNUM = DLAMCH( 'Safe minimum' )
  549:       BIGNUM = ONE / SMLNUM
  550:       IF( NOFACT .OR. EQUIL ) THEN
  551:          EQUED = 'N'
  552:          RCEQU = .FALSE.
  553:       ELSE
  554:          RCEQU = LSAME( EQUED, 'Y' )
  555:       ENDIF
  556: *
  557: *     Default is failure.  If an input parameter is wrong or
  558: *     factorization fails, make everything look horrible.  Only the
  559: *     pivot growth is set here, the rest is initialized in ZPORFSX.
  560: *
  561:       RPVGRW = ZERO
  562: *
  563: *     Test the input parameters.  PARAMS is not tested until ZPORFSX.
  564: *
  565:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  566:      $     LSAME( FACT, 'F' ) ) THEN
  567:          INFO = -1
  568:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
  569:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
  570:          INFO = -2
  571:       ELSE IF( N.LT.0 ) THEN
  572:          INFO = -3
  573:       ELSE IF( NRHS.LT.0 ) THEN
  574:          INFO = -4
  575:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  576:          INFO = -6
  577:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  578:          INFO = -8
  579:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  580:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  581:          INFO = -9
  582:       ELSE
  583:          IF ( RCEQU ) THEN
  584:             SMIN = BIGNUM
  585:             SMAX = ZERO
  586:             DO 10 J = 1, N
  587:                SMIN = MIN( SMIN, S( J ) )
  588:                SMAX = MAX( SMAX, S( J ) )
  589:  10         CONTINUE
  590:             IF( SMIN.LE.ZERO ) THEN
  591:                INFO = -10
  592:             ELSE IF( N.GT.0 ) THEN
  593:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  594:             ELSE
  595:                SCOND = ONE
  596:             END IF
  597:          END IF
  598:          IF( INFO.EQ.0 ) THEN
  599:             IF( LDB.LT.MAX( 1, N ) ) THEN
  600:                INFO = -12
  601:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  602:                INFO = -14
  603:             END IF
  604:          END IF
  605:       END IF
  606: *
  607:       IF( INFO.NE.0 ) THEN
  608:          CALL XERBLA( 'ZPOSVXX', -INFO )
  609:          RETURN
  610:       END IF
  611: *
  612:       IF( EQUIL ) THEN
  613: *
  614: *     Compute row and column scalings to equilibrate the matrix A.
  615: *
  616:          CALL ZPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
  617:          IF( INFEQU.EQ.0 ) THEN
  618: *
  619: *     Equilibrate the matrix.
  620: *
  621:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  622:             RCEQU = LSAME( EQUED, 'Y' )
  623:          END IF
  624:       END IF
  625: *
  626: *     Scale the right-hand side.
  627: *
  628:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
  629: *
  630:       IF( NOFACT .OR. EQUIL ) THEN
  631: *
  632: *        Compute the Cholesky factorization of A.
  633: *
  634:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  635:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
  636: *
  637: *        Return if INFO is non-zero.
  638: *
  639:          IF( INFO.GT.0 ) THEN
  640: *
  641: *           Pivot in column INFO is exactly 0
  642: *           Compute the reciprocal pivot growth factor of the
  643: *           leading rank-deficient INFO columns of A.
  644: *
  645:             RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
  646:             RETURN
  647:          END IF
  648:       END IF
  649: *
  650: *     Compute the reciprocal pivot growth factor RPVGRW.
  651: *
  652:       RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
  653: *
  654: *     Compute the solution matrix X.
  655: *
  656:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  657:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  658: *
  659: *     Use iterative refinement to improve the computed solution and
  660: *     compute error bounds and backward error estimates for it.
  661: *
  662:       CALL ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
  663:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  664:      $     ERR_BNDS_COMP,  NPARAMS, PARAMS, WORK, RWORK, INFO )
  665: 
  666: *
  667: *     Scale solutions.
  668: *
  669:       IF ( RCEQU ) THEN
  670:          CALL ZLASCL2( N, NRHS, S, X, LDX )
  671:       END IF
  672: *
  673:       RETURN
  674: *
  675: *     End of ZPOSVXX
  676: *
  677:       END

CVSweb interface <joel.bertrand@systella.fr>