Annotation of rpl/lapack/lapack/zposvxx.f, revision 1.9

1.5       bertrand    1: *> \brief <b> ZPOSVXX computes the solution to system of linear equations A * X = B for PO matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZPOSVXX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvxx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvxx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvxx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                     22: *                           S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                     23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                     24: *                           NPARAMS, PARAMS, WORK, RWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          EQUED, FACT, UPLO
                     28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     29: *      $                   N_ERR_BNDS
                     30: *       DOUBLE PRECISION   RCOND, RPVGRW
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     34: *      $                   WORK( * ), X( LDX, * )
                     35: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                     36: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     37: *      $                   ERR_BNDS_COMP( NRHS, * )
                     38: *       ..
                     39: *  
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *>    ZPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
                     47: *>    to compute the solution to a complex*16 system of linear equations
                     48: *>    A * X = B, where A is an N-by-N symmetric positive definite matrix
                     49: *>    and X and B are N-by-NRHS matrices.
                     50: *>
                     51: *>    If requested, both normwise and maximum componentwise error bounds
                     52: *>    are returned. ZPOSVXX will return a solution with a tiny
                     53: *>    guaranteed error (O(eps) where eps is the working machine
                     54: *>    precision) unless the matrix is very ill-conditioned, in which
                     55: *>    case a warning is returned. Relevant condition numbers also are
                     56: *>    calculated and returned.
                     57: *>
                     58: *>    ZPOSVXX accepts user-provided factorizations and equilibration
                     59: *>    factors; see the definitions of the FACT and EQUED options.
                     60: *>    Solving with refinement and using a factorization from a previous
                     61: *>    ZPOSVXX call will also produce a solution with either O(eps)
                     62: *>    errors or warnings, but we cannot make that claim for general
                     63: *>    user-provided factorizations and equilibration factors if they
                     64: *>    differ from what ZPOSVXX would itself produce.
                     65: *> \endverbatim
                     66: *
                     67: *> \par Description:
                     68: *  =================
                     69: *>
                     70: *> \verbatim
                     71: *>
                     72: *>    The following steps are performed:
                     73: *>
                     74: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
                     75: *>    the system:
                     76: *>
                     77: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
                     78: *>
                     79: *>    Whether or not the system will be equilibrated depends on the
                     80: *>    scaling of the matrix A, but if equilibration is used, A is
                     81: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     82: *>
                     83: *>    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     84: *>    factor the matrix A (after equilibration if FACT = 'E') as
                     85: *>       A = U**T* U,  if UPLO = 'U', or
                     86: *>       A = L * L**T,  if UPLO = 'L',
                     87: *>    where U is an upper triangular matrix and L is a lower triangular
                     88: *>    matrix.
                     89: *>
                     90: *>    3. If the leading i-by-i principal minor is not positive definite,
                     91: *>    then the routine returns with INFO = i. Otherwise, the factored
                     92: *>    form of A is used to estimate the condition number of the matrix
                     93: *>    A (see argument RCOND).  If the reciprocal of the condition number
                     94: *>    is less than machine precision, the routine still goes on to solve
                     95: *>    for X and compute error bounds as described below.
                     96: *>
                     97: *>    4. The system of equations is solved for X using the factored form
                     98: *>    of A.
                     99: *>
                    100: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
                    101: *>    the routine will use iterative refinement to try to get a small
                    102: *>    error and error bounds.  Refinement calculates the residual to at
                    103: *>    least twice the working precision.
                    104: *>
                    105: *>    6. If equilibration was used, the matrix X is premultiplied by
                    106: *>    diag(S) so that it solves the original system before
                    107: *>    equilibration.
                    108: *> \endverbatim
                    109: *
                    110: *  Arguments:
                    111: *  ==========
                    112: *
                    113: *> \verbatim
                    114: *>     Some optional parameters are bundled in the PARAMS array.  These
                    115: *>     settings determine how refinement is performed, but often the
                    116: *>     defaults are acceptable.  If the defaults are acceptable, users
                    117: *>     can pass NPARAMS = 0 which prevents the source code from accessing
                    118: *>     the PARAMS argument.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] FACT
                    122: *> \verbatim
                    123: *>          FACT is CHARACTER*1
                    124: *>     Specifies whether or not the factored form of the matrix A is
                    125: *>     supplied on entry, and if not, whether the matrix A should be
                    126: *>     equilibrated before it is factored.
                    127: *>       = 'F':  On entry, AF contains the factored form of A.
                    128: *>               If EQUED is not 'N', the matrix A has been
                    129: *>               equilibrated with scaling factors given by S.
                    130: *>               A and AF are not modified.
                    131: *>       = 'N':  The matrix A will be copied to AF and factored.
                    132: *>       = 'E':  The matrix A will be equilibrated if necessary, then
                    133: *>               copied to AF and factored.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] UPLO
                    137: *> \verbatim
                    138: *>          UPLO is CHARACTER*1
                    139: *>       = 'U':  Upper triangle of A is stored;
                    140: *>       = 'L':  Lower triangle of A is stored.
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] N
                    144: *> \verbatim
                    145: *>          N is INTEGER
                    146: *>     The number of linear equations, i.e., the order of the
                    147: *>     matrix A.  N >= 0.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] NRHS
                    151: *> \verbatim
                    152: *>          NRHS is INTEGER
                    153: *>     The number of right hand sides, i.e., the number of columns
                    154: *>     of the matrices B and X.  NRHS >= 0.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in,out] A
                    158: *> \verbatim
                    159: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    160: *>     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
                    161: *>     'Y', then A must contain the equilibrated matrix
                    162: *>     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
                    163: *>     triangular part of A contains the upper triangular part of the
                    164: *>     matrix A, and the strictly lower triangular part of A is not
                    165: *>     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
                    166: *>     part of A contains the lower triangular part of the matrix A, and
                    167: *>     the strictly upper triangular part of A is not referenced.  A is
                    168: *>     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
                    169: *>     'N' on exit.
                    170: *>
                    171: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    172: *>     diag(S)*A*diag(S).
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[in] LDA
                    176: *> \verbatim
                    177: *>          LDA is INTEGER
                    178: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in,out] AF
                    182: *> \verbatim
1.7       bertrand  183: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
1.5       bertrand  184: *>     If FACT = 'F', then AF is an input argument and on entry
                    185: *>     contains the triangular factor U or L from the Cholesky
                    186: *>     factorization A = U**T*U or A = L*L**T, in the same storage
                    187: *>     format as A.  If EQUED .ne. 'N', then AF is the factored
                    188: *>     form of the equilibrated matrix diag(S)*A*diag(S).
                    189: *>
                    190: *>     If FACT = 'N', then AF is an output argument and on exit
                    191: *>     returns the triangular factor U or L from the Cholesky
                    192: *>     factorization A = U**T*U or A = L*L**T of the original
                    193: *>     matrix A.
                    194: *>
                    195: *>     If FACT = 'E', then AF is an output argument and on exit
                    196: *>     returns the triangular factor U or L from the Cholesky
                    197: *>     factorization A = U**T*U or A = L*L**T of the equilibrated
                    198: *>     matrix A (see the description of A for the form of the
                    199: *>     equilibrated matrix).
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LDAF
                    203: *> \verbatim
                    204: *>          LDAF is INTEGER
                    205: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[in,out] EQUED
                    209: *> \verbatim
1.7       bertrand  210: *>          EQUED is CHARACTER*1
1.5       bertrand  211: *>     Specifies the form of equilibration that was done.
                    212: *>       = 'N':  No equilibration (always true if FACT = 'N').
                    213: *>       = 'Y':  Both row and column equilibration, i.e., A has been
                    214: *>               replaced by diag(S) * A * diag(S).
                    215: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    216: *>     output argument.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in,out] S
                    220: *> \verbatim
1.7       bertrand  221: *>          S is DOUBLE PRECISION array, dimension (N)
1.5       bertrand  222: *>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
                    223: *>     the left and right by diag(S).  S is an input argument if FACT =
                    224: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    225: *>     = 'Y', each element of S must be positive.  If S is output, each
                    226: *>     element of S is a power of the radix. If S is input, each element
                    227: *>     of S should be a power of the radix to ensure a reliable solution
                    228: *>     and error estimates. Scaling by powers of the radix does not cause
                    229: *>     rounding errors unless the result underflows or overflows.
                    230: *>     Rounding errors during scaling lead to refining with a matrix that
                    231: *>     is not equivalent to the input matrix, producing error estimates
                    232: *>     that may not be reliable.
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[in,out] B
                    236: *> \verbatim
                    237: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    238: *>     On entry, the N-by-NRHS right hand side matrix B.
                    239: *>     On exit,
                    240: *>     if EQUED = 'N', B is not modified;
                    241: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[in] LDB
                    245: *> \verbatim
                    246: *>          LDB is INTEGER
                    247: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] X
                    251: *> \verbatim
                    252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    253: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
                    254: *>     system of equations.  Note that A and B are modified on exit if
                    255: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
                    256: *>     inv(diag(S))*X.
                    257: *> \endverbatim
                    258: *>
                    259: *> \param[in] LDX
                    260: *> \verbatim
                    261: *>          LDX is INTEGER
                    262: *>     The leading dimension of the array X.  LDX >= max(1,N).
                    263: *> \endverbatim
                    264: *>
                    265: *> \param[out] RCOND
                    266: *> \verbatim
                    267: *>          RCOND is DOUBLE PRECISION
                    268: *>     Reciprocal scaled condition number.  This is an estimate of the
                    269: *>     reciprocal Skeel condition number of the matrix A after
                    270: *>     equilibration (if done).  If this is less than the machine
                    271: *>     precision (in particular, if it is zero), the matrix is singular
                    272: *>     to working precision.  Note that the error may still be small even
                    273: *>     if this number is very small and the matrix appears ill-
                    274: *>     conditioned.
                    275: *> \endverbatim
                    276: *>
                    277: *> \param[out] RPVGRW
                    278: *> \verbatim
                    279: *>          RPVGRW is DOUBLE PRECISION
                    280: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
                    281: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
                    282: *>     norm is used.  If this is much less than 1, then the stability of
                    283: *>     the LU factorization of the (equilibrated) matrix A could be poor.
                    284: *>     This also means that the solution X, estimated condition numbers,
                    285: *>     and error bounds could be unreliable. If factorization fails with
                    286: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
                    287: *>     for the leading INFO columns of A.
                    288: *> \endverbatim
                    289: *>
                    290: *> \param[out] BERR
                    291: *> \verbatim
                    292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    293: *>     Componentwise relative backward error.  This is the
                    294: *>     componentwise relative backward error of each solution vector X(j)
                    295: *>     (i.e., the smallest relative change in any element of A or B that
                    296: *>     makes X(j) an exact solution).
                    297: *> \endverbatim
                    298: *>
                    299: *> \param[in] N_ERR_BNDS
                    300: *> \verbatim
                    301: *>          N_ERR_BNDS is INTEGER
                    302: *>     Number of error bounds to return for each right hand side
                    303: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    304: *>     ERR_BNDS_COMP below.
                    305: *> \endverbatim
                    306: *>
                    307: *> \param[out] ERR_BNDS_NORM
                    308: *> \verbatim
                    309: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    310: *>     For each right-hand side, this array contains information about
                    311: *>     various error bounds and condition numbers corresponding to the
                    312: *>     normwise relative error, which is defined as follows:
                    313: *>
                    314: *>     Normwise relative error in the ith solution vector:
                    315: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    316: *>            ------------------------------
                    317: *>                  max_j abs(X(j,i))
                    318: *>
                    319: *>     The array is indexed by the type of error information as described
                    320: *>     below. There currently are up to three pieces of information
                    321: *>     returned.
                    322: *>
                    323: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    324: *>     right-hand side.
                    325: *>
                    326: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    327: *>     three fields:
                    328: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    329: *>              reciprocal condition number is less than the threshold
                    330: *>              sqrt(n) * dlamch('Epsilon').
                    331: *>
                    332: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    333: *>              almost certainly within a factor of 10 of the true error
                    334: *>              so long as the next entry is greater than the threshold
                    335: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    336: *>              be trusted if the previous boolean is true.
                    337: *>
                    338: *>     err = 3  Reciprocal condition number: Estimated normwise
                    339: *>              reciprocal condition number.  Compared with the threshold
                    340: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    341: *>              estimate is "guaranteed". These reciprocal condition
                    342: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    343: *>              appropriately scaled matrix Z.
                    344: *>              Let Z = S*A, where S scales each row by a power of the
                    345: *>              radix so all absolute row sums of Z are approximately 1.
                    346: *>
                    347: *>     See Lapack Working Note 165 for further details and extra
                    348: *>     cautions.
                    349: *> \endverbatim
                    350: *>
                    351: *> \param[out] ERR_BNDS_COMP
                    352: *> \verbatim
                    353: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    354: *>     For each right-hand side, this array contains information about
                    355: *>     various error bounds and condition numbers corresponding to the
                    356: *>     componentwise relative error, which is defined as follows:
                    357: *>
                    358: *>     Componentwise relative error in the ith solution vector:
                    359: *>                    abs(XTRUE(j,i) - X(j,i))
                    360: *>             max_j ----------------------
                    361: *>                         abs(X(j,i))
                    362: *>
                    363: *>     The array is indexed by the right-hand side i (on which the
                    364: *>     componentwise relative error depends), and the type of error
                    365: *>     information as described below. There currently are up to three
                    366: *>     pieces of information returned for each right-hand side. If
                    367: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    368: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    369: *>     the first (:,N_ERR_BNDS) entries are returned.
                    370: *>
                    371: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    372: *>     right-hand side.
                    373: *>
                    374: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    375: *>     three fields:
                    376: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    377: *>              reciprocal condition number is less than the threshold
                    378: *>              sqrt(n) * dlamch('Epsilon').
                    379: *>
                    380: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    381: *>              almost certainly within a factor of 10 of the true error
                    382: *>              so long as the next entry is greater than the threshold
                    383: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    384: *>              be trusted if the previous boolean is true.
                    385: *>
                    386: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    387: *>              reciprocal condition number.  Compared with the threshold
                    388: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    389: *>              estimate is "guaranteed". These reciprocal condition
                    390: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    391: *>              appropriately scaled matrix Z.
                    392: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    393: *>              current right-hand side and S scales each row of
                    394: *>              A*diag(x) by a power of the radix so all absolute row
                    395: *>              sums of Z are approximately 1.
                    396: *>
                    397: *>     See Lapack Working Note 165 for further details and extra
                    398: *>     cautions.
                    399: *> \endverbatim
                    400: *>
                    401: *> \param[in] NPARAMS
                    402: *> \verbatim
                    403: *>          NPARAMS is INTEGER
                    404: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    405: *>     PARAMS array is never referenced and default values are used.
                    406: *> \endverbatim
                    407: *>
                    408: *> \param[in,out] PARAMS
                    409: *> \verbatim
1.7       bertrand  410: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
1.5       bertrand  411: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    412: *>     that entry will be filled with default value used for that
                    413: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
                    414: *>     are used for higher-numbered parameters.
                    415: *>
                    416: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    417: *>            refinement or not.
                    418: *>         Default: 1.0D+0
                    419: *>            = 0.0 : No refinement is performed, and no error bounds are
                    420: *>                    computed.
                    421: *>            = 1.0 : Use the extra-precise refinement algorithm.
                    422: *>              (other values are reserved for future use)
                    423: *>
                    424: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    425: *>            computations allowed for refinement.
                    426: *>         Default: 10
                    427: *>         Aggressive: Set to 100 to permit convergence using approximate
                    428: *>                     factorizations or factorizations other than LU. If
                    429: *>                     the factorization uses a technique other than
                    430: *>                     Gaussian elimination, the guarantees in
                    431: *>                     err_bnds_norm and err_bnds_comp may no longer be
                    432: *>                     trustworthy.
                    433: *>
                    434: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    435: *>            will attempt to find a solution with small componentwise
                    436: *>            relative error in the double-precision algorithm.  Positive
                    437: *>            is true, 0.0 is false.
                    438: *>         Default: 1.0 (attempt componentwise convergence)
                    439: *> \endverbatim
                    440: *>
                    441: *> \param[out] WORK
                    442: *> \verbatim
                    443: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    444: *> \endverbatim
                    445: *>
                    446: *> \param[out] RWORK
                    447: *> \verbatim
                    448: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    449: *> \endverbatim
                    450: *>
                    451: *> \param[out] INFO
                    452: *> \verbatim
                    453: *>          INFO is INTEGER
                    454: *>       = 0:  Successful exit. The solution to every right-hand side is
                    455: *>         guaranteed.
                    456: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
                    457: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    458: *>         has been completed, but the factor U is exactly singular, so
                    459: *>         the solution and error bounds could not be computed. RCOND = 0
                    460: *>         is returned.
                    461: *>       = N+J: The solution corresponding to the Jth right-hand side is
                    462: *>         not guaranteed. The solutions corresponding to other right-
                    463: *>         hand sides K with K > J may not be guaranteed as well, but
                    464: *>         only the first such right-hand side is reported. If a small
                    465: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
                    466: *>         the Jth right-hand side is the first with a normwise error
                    467: *>         bound that is not guaranteed (the smallest J such
                    468: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    469: *>         the Jth right-hand side is the first with either a normwise or
                    470: *>         componentwise error bound that is not guaranteed (the smallest
                    471: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    472: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    473: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    474: *>         about all of the right-hand sides check ERR_BNDS_NORM or
                    475: *>         ERR_BNDS_COMP.
                    476: *> \endverbatim
                    477: *
                    478: *  Authors:
                    479: *  ========
                    480: *
                    481: *> \author Univ. of Tennessee 
                    482: *> \author Univ. of California Berkeley 
                    483: *> \author Univ. of Colorado Denver 
                    484: *> \author NAG Ltd. 
                    485: *
1.7       bertrand  486: *> \date April 2012
1.5       bertrand  487: *
                    488: *> \ingroup complex16POsolve
                    489: *
                    490: *  =====================================================================
1.1       bertrand  491:       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                    492:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                    493:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    494:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
                    495: *
1.7       bertrand  496: *  -- LAPACK driver routine (version 3.4.1) --
1.5       bertrand  497: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    498: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.7       bertrand  499: *     April 2012
1.1       bertrand  500: *
                    501: *     .. Scalar Arguments ..
                    502:       CHARACTER          EQUED, FACT, UPLO
                    503:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    504:      $                   N_ERR_BNDS
                    505:       DOUBLE PRECISION   RCOND, RPVGRW
                    506: *     ..
                    507: *     .. Array Arguments ..
                    508:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    509:      $                   WORK( * ), X( LDX, * )
                    510:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                    511:      $                   ERR_BNDS_NORM( NRHS, * ),
                    512:      $                   ERR_BNDS_COMP( NRHS, * )
                    513: *     ..
                    514: *
1.5       bertrand  515: *  ==================================================================
1.1       bertrand  516: *
                    517: *     .. Parameters ..
                    518:       DOUBLE PRECISION   ZERO, ONE
                    519:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    520:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    521:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    522:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    523:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    524:      $                   BERR_I = 3 )
                    525:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    526:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    527:      $                   PIV_GROWTH_I = 9 )
                    528: *     ..
                    529: *     .. Local Scalars ..
                    530:       LOGICAL            EQUIL, NOFACT, RCEQU
                    531:       INTEGER            INFEQU, J
                    532:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
                    533: *     ..
                    534: *     .. External Functions ..
                    535:       EXTERNAL           LSAME, DLAMCH, ZLA_PORPVGRW
                    536:       LOGICAL            LSAME
                    537:       DOUBLE PRECISION   DLAMCH, ZLA_PORPVGRW
                    538: *     ..
                    539: *     .. External Subroutines ..
                    540:       EXTERNAL           ZPOCON, ZPOEQUB, ZPOTRF, ZPOTRS, ZLACPY,
                    541:      $                   ZLAQHE, XERBLA, ZLASCL2, ZPORFSX
                    542: *     ..
                    543: *     .. Intrinsic Functions ..
                    544:       INTRINSIC          MAX, MIN
                    545: *     ..
                    546: *     .. Executable Statements ..
                    547: *
                    548:       INFO = 0
                    549:       NOFACT = LSAME( FACT, 'N' )
                    550:       EQUIL = LSAME( FACT, 'E' )
                    551:       SMLNUM = DLAMCH( 'Safe minimum' )
                    552:       BIGNUM = ONE / SMLNUM
                    553:       IF( NOFACT .OR. EQUIL ) THEN
                    554:          EQUED = 'N'
                    555:          RCEQU = .FALSE.
                    556:       ELSE
                    557:          RCEQU = LSAME( EQUED, 'Y' )
                    558:       ENDIF
                    559: *
                    560: *     Default is failure.  If an input parameter is wrong or
                    561: *     factorization fails, make everything look horrible.  Only the
                    562: *     pivot growth is set here, the rest is initialized in ZPORFSX.
                    563: *
                    564:       RPVGRW = ZERO
                    565: *
                    566: *     Test the input parameters.  PARAMS is not tested until ZPORFSX.
                    567: *
                    568:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
                    569:      $     LSAME( FACT, 'F' ) ) THEN
                    570:          INFO = -1
                    571:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
                    572:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
                    573:          INFO = -2
                    574:       ELSE IF( N.LT.0 ) THEN
                    575:          INFO = -3
                    576:       ELSE IF( NRHS.LT.0 ) THEN
                    577:          INFO = -4
                    578:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    579:          INFO = -6
                    580:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    581:          INFO = -8
                    582:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    583:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    584:          INFO = -9
                    585:       ELSE
                    586:          IF ( RCEQU ) THEN
                    587:             SMIN = BIGNUM
                    588:             SMAX = ZERO
                    589:             DO 10 J = 1, N
                    590:                SMIN = MIN( SMIN, S( J ) )
                    591:                SMAX = MAX( SMAX, S( J ) )
                    592:  10         CONTINUE
                    593:             IF( SMIN.LE.ZERO ) THEN
                    594:                INFO = -10
                    595:             ELSE IF( N.GT.0 ) THEN
                    596:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    597:             ELSE
                    598:                SCOND = ONE
                    599:             END IF
                    600:          END IF
                    601:          IF( INFO.EQ.0 ) THEN
                    602:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    603:                INFO = -12
                    604:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    605:                INFO = -14
                    606:             END IF
                    607:          END IF
                    608:       END IF
                    609: *
                    610:       IF( INFO.NE.0 ) THEN
                    611:          CALL XERBLA( 'ZPOSVXX', -INFO )
                    612:          RETURN
                    613:       END IF
                    614: *
                    615:       IF( EQUIL ) THEN
                    616: *
                    617: *     Compute row and column scalings to equilibrate the matrix A.
                    618: *
                    619:          CALL ZPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
                    620:          IF( INFEQU.EQ.0 ) THEN
                    621: *
                    622: *     Equilibrate the matrix.
                    623: *
                    624:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    625:             RCEQU = LSAME( EQUED, 'Y' )
                    626:          END IF
                    627:       END IF
                    628: *
                    629: *     Scale the right-hand side.
                    630: *
                    631:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
                    632: *
                    633:       IF( NOFACT .OR. EQUIL ) THEN
                    634: *
                    635: *        Compute the Cholesky factorization of A.
                    636: *
                    637:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    638:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
                    639: *
                    640: *        Return if INFO is non-zero.
                    641: *
                    642:          IF( INFO.GT.0 ) THEN
                    643: *
                    644: *           Pivot in column INFO is exactly 0
                    645: *           Compute the reciprocal pivot growth factor of the
                    646: *           leading rank-deficient INFO columns of A.
                    647: *
                    648:             RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
                    649:             RETURN
                    650:          END IF
                    651:       END IF
                    652: *
                    653: *     Compute the reciprocal pivot growth factor RPVGRW.
                    654: *
                    655:       RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
                    656: *
                    657: *     Compute the solution matrix X.
                    658: *
                    659:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    660:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
                    661: *
                    662: *     Use iterative refinement to improve the computed solution and
                    663: *     compute error bounds and backward error estimates for it.
                    664: *
                    665:       CALL ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
                    666:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
                    667:      $     ERR_BNDS_COMP,  NPARAMS, PARAMS, WORK, RWORK, INFO )
                    668: 
                    669: *
                    670: *     Scale solutions.
                    671: *
                    672:       IF ( RCEQU ) THEN
                    673:          CALL ZLASCL2( N, NRHS, S, X, LDX )
                    674:       END IF
                    675: *
                    676:       RETURN
                    677: *
                    678: *     End of ZPOSVXX
                    679: *
                    680:       END

CVSweb interface <joel.bertrand@systella.fr>