Annotation of rpl/lapack/lapack/zposvxx.f, revision 1.5

1.5     ! bertrand    1: *> \brief <b> ZPOSVXX computes the solution to system of linear equations A * X = B for PO matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZPOSVXX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvxx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvxx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvxx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
        !            22: *                           S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
        !            23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
        !            24: *                           NPARAMS, PARAMS, WORK, RWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       CHARACTER          EQUED, FACT, UPLO
        !            28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
        !            29: *      $                   N_ERR_BNDS
        !            30: *       DOUBLE PRECISION   RCOND, RPVGRW
        !            31: *       ..
        !            32: *       .. Array Arguments ..
        !            33: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            34: *      $                   WORK( * ), X( LDX, * )
        !            35: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
        !            36: *      $                   ERR_BNDS_NORM( NRHS, * ),
        !            37: *      $                   ERR_BNDS_COMP( NRHS, * )
        !            38: *       ..
        !            39: *  
        !            40: *
        !            41: *> \par Purpose:
        !            42: *  =============
        !            43: *>
        !            44: *> \verbatim
        !            45: *>
        !            46: *>    ZPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
        !            47: *>    to compute the solution to a complex*16 system of linear equations
        !            48: *>    A * X = B, where A is an N-by-N symmetric positive definite matrix
        !            49: *>    and X and B are N-by-NRHS matrices.
        !            50: *>
        !            51: *>    If requested, both normwise and maximum componentwise error bounds
        !            52: *>    are returned. ZPOSVXX will return a solution with a tiny
        !            53: *>    guaranteed error (O(eps) where eps is the working machine
        !            54: *>    precision) unless the matrix is very ill-conditioned, in which
        !            55: *>    case a warning is returned. Relevant condition numbers also are
        !            56: *>    calculated and returned.
        !            57: *>
        !            58: *>    ZPOSVXX accepts user-provided factorizations and equilibration
        !            59: *>    factors; see the definitions of the FACT and EQUED options.
        !            60: *>    Solving with refinement and using a factorization from a previous
        !            61: *>    ZPOSVXX call will also produce a solution with either O(eps)
        !            62: *>    errors or warnings, but we cannot make that claim for general
        !            63: *>    user-provided factorizations and equilibration factors if they
        !            64: *>    differ from what ZPOSVXX would itself produce.
        !            65: *> \endverbatim
        !            66: *
        !            67: *> \par Description:
        !            68: *  =================
        !            69: *>
        !            70: *> \verbatim
        !            71: *>
        !            72: *>    The following steps are performed:
        !            73: *>
        !            74: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
        !            75: *>    the system:
        !            76: *>
        !            77: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
        !            78: *>
        !            79: *>    Whether or not the system will be equilibrated depends on the
        !            80: *>    scaling of the matrix A, but if equilibration is used, A is
        !            81: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            82: *>
        !            83: *>    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            84: *>    factor the matrix A (after equilibration if FACT = 'E') as
        !            85: *>       A = U**T* U,  if UPLO = 'U', or
        !            86: *>       A = L * L**T,  if UPLO = 'L',
        !            87: *>    where U is an upper triangular matrix and L is a lower triangular
        !            88: *>    matrix.
        !            89: *>
        !            90: *>    3. If the leading i-by-i principal minor is not positive definite,
        !            91: *>    then the routine returns with INFO = i. Otherwise, the factored
        !            92: *>    form of A is used to estimate the condition number of the matrix
        !            93: *>    A (see argument RCOND).  If the reciprocal of the condition number
        !            94: *>    is less than machine precision, the routine still goes on to solve
        !            95: *>    for X and compute error bounds as described below.
        !            96: *>
        !            97: *>    4. The system of equations is solved for X using the factored form
        !            98: *>    of A.
        !            99: *>
        !           100: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
        !           101: *>    the routine will use iterative refinement to try to get a small
        !           102: *>    error and error bounds.  Refinement calculates the residual to at
        !           103: *>    least twice the working precision.
        !           104: *>
        !           105: *>    6. If equilibration was used, the matrix X is premultiplied by
        !           106: *>    diag(S) so that it solves the original system before
        !           107: *>    equilibration.
        !           108: *> \endverbatim
        !           109: *
        !           110: *  Arguments:
        !           111: *  ==========
        !           112: *
        !           113: *> \verbatim
        !           114: *>     Some optional parameters are bundled in the PARAMS array.  These
        !           115: *>     settings determine how refinement is performed, but often the
        !           116: *>     defaults are acceptable.  If the defaults are acceptable, users
        !           117: *>     can pass NPARAMS = 0 which prevents the source code from accessing
        !           118: *>     the PARAMS argument.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] FACT
        !           122: *> \verbatim
        !           123: *>          FACT is CHARACTER*1
        !           124: *>     Specifies whether or not the factored form of the matrix A is
        !           125: *>     supplied on entry, and if not, whether the matrix A should be
        !           126: *>     equilibrated before it is factored.
        !           127: *>       = 'F':  On entry, AF contains the factored form of A.
        !           128: *>               If EQUED is not 'N', the matrix A has been
        !           129: *>               equilibrated with scaling factors given by S.
        !           130: *>               A and AF are not modified.
        !           131: *>       = 'N':  The matrix A will be copied to AF and factored.
        !           132: *>       = 'E':  The matrix A will be equilibrated if necessary, then
        !           133: *>               copied to AF and factored.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] UPLO
        !           137: *> \verbatim
        !           138: *>          UPLO is CHARACTER*1
        !           139: *>       = 'U':  Upper triangle of A is stored;
        !           140: *>       = 'L':  Lower triangle of A is stored.
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[in] N
        !           144: *> \verbatim
        !           145: *>          N is INTEGER
        !           146: *>     The number of linear equations, i.e., the order of the
        !           147: *>     matrix A.  N >= 0.
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in] NRHS
        !           151: *> \verbatim
        !           152: *>          NRHS is INTEGER
        !           153: *>     The number of right hand sides, i.e., the number of columns
        !           154: *>     of the matrices B and X.  NRHS >= 0.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[in,out] A
        !           158: *> \verbatim
        !           159: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !           160: *>     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
        !           161: *>     'Y', then A must contain the equilibrated matrix
        !           162: *>     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
        !           163: *>     triangular part of A contains the upper triangular part of the
        !           164: *>     matrix A, and the strictly lower triangular part of A is not
        !           165: *>     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
        !           166: *>     part of A contains the lower triangular part of the matrix A, and
        !           167: *>     the strictly upper triangular part of A is not referenced.  A is
        !           168: *>     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
        !           169: *>     'N' on exit.
        !           170: *>
        !           171: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           172: *>     diag(S)*A*diag(S).
        !           173: *> \endverbatim
        !           174: *>
        !           175: *> \param[in] LDA
        !           176: *> \verbatim
        !           177: *>          LDA is INTEGER
        !           178: *>     The leading dimension of the array A.  LDA >= max(1,N).
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[in,out] AF
        !           182: *> \verbatim
        !           183: *>          AF is or output) COMPLEX*16 array, dimension (LDAF,N)
        !           184: *>     If FACT = 'F', then AF is an input argument and on entry
        !           185: *>     contains the triangular factor U or L from the Cholesky
        !           186: *>     factorization A = U**T*U or A = L*L**T, in the same storage
        !           187: *>     format as A.  If EQUED .ne. 'N', then AF is the factored
        !           188: *>     form of the equilibrated matrix diag(S)*A*diag(S).
        !           189: *>
        !           190: *>     If FACT = 'N', then AF is an output argument and on exit
        !           191: *>     returns the triangular factor U or L from the Cholesky
        !           192: *>     factorization A = U**T*U or A = L*L**T of the original
        !           193: *>     matrix A.
        !           194: *>
        !           195: *>     If FACT = 'E', then AF is an output argument and on exit
        !           196: *>     returns the triangular factor U or L from the Cholesky
        !           197: *>     factorization A = U**T*U or A = L*L**T of the equilibrated
        !           198: *>     matrix A (see the description of A for the form of the
        !           199: *>     equilibrated matrix).
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[in] LDAF
        !           203: *> \verbatim
        !           204: *>          LDAF is INTEGER
        !           205: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
        !           206: *> \endverbatim
        !           207: *>
        !           208: *> \param[in,out] EQUED
        !           209: *> \verbatim
        !           210: *>          EQUED is or output) CHARACTER*1
        !           211: *>     Specifies the form of equilibration that was done.
        !           212: *>       = 'N':  No equilibration (always true if FACT = 'N').
        !           213: *>       = 'Y':  Both row and column equilibration, i.e., A has been
        !           214: *>               replaced by diag(S) * A * diag(S).
        !           215: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           216: *>     output argument.
        !           217: *> \endverbatim
        !           218: *>
        !           219: *> \param[in,out] S
        !           220: *> \verbatim
        !           221: *>          S is or output) DOUBLE PRECISION array, dimension (N)
        !           222: *>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
        !           223: *>     the left and right by diag(S).  S is an input argument if FACT =
        !           224: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
        !           225: *>     = 'Y', each element of S must be positive.  If S is output, each
        !           226: *>     element of S is a power of the radix. If S is input, each element
        !           227: *>     of S should be a power of the radix to ensure a reliable solution
        !           228: *>     and error estimates. Scaling by powers of the radix does not cause
        !           229: *>     rounding errors unless the result underflows or overflows.
        !           230: *>     Rounding errors during scaling lead to refining with a matrix that
        !           231: *>     is not equivalent to the input matrix, producing error estimates
        !           232: *>     that may not be reliable.
        !           233: *> \endverbatim
        !           234: *>
        !           235: *> \param[in,out] B
        !           236: *> \verbatim
        !           237: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           238: *>     On entry, the N-by-NRHS right hand side matrix B.
        !           239: *>     On exit,
        !           240: *>     if EQUED = 'N', B is not modified;
        !           241: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[in] LDB
        !           245: *> \verbatim
        !           246: *>          LDB is INTEGER
        !           247: *>     The leading dimension of the array B.  LDB >= max(1,N).
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[out] X
        !           251: *> \verbatim
        !           252: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           253: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
        !           254: *>     system of equations.  Note that A and B are modified on exit if
        !           255: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
        !           256: *>     inv(diag(S))*X.
        !           257: *> \endverbatim
        !           258: *>
        !           259: *> \param[in] LDX
        !           260: *> \verbatim
        !           261: *>          LDX is INTEGER
        !           262: *>     The leading dimension of the array X.  LDX >= max(1,N).
        !           263: *> \endverbatim
        !           264: *>
        !           265: *> \param[out] RCOND
        !           266: *> \verbatim
        !           267: *>          RCOND is DOUBLE PRECISION
        !           268: *>     Reciprocal scaled condition number.  This is an estimate of the
        !           269: *>     reciprocal Skeel condition number of the matrix A after
        !           270: *>     equilibration (if done).  If this is less than the machine
        !           271: *>     precision (in particular, if it is zero), the matrix is singular
        !           272: *>     to working precision.  Note that the error may still be small even
        !           273: *>     if this number is very small and the matrix appears ill-
        !           274: *>     conditioned.
        !           275: *> \endverbatim
        !           276: *>
        !           277: *> \param[out] RPVGRW
        !           278: *> \verbatim
        !           279: *>          RPVGRW is DOUBLE PRECISION
        !           280: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
        !           281: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
        !           282: *>     norm is used.  If this is much less than 1, then the stability of
        !           283: *>     the LU factorization of the (equilibrated) matrix A could be poor.
        !           284: *>     This also means that the solution X, estimated condition numbers,
        !           285: *>     and error bounds could be unreliable. If factorization fails with
        !           286: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
        !           287: *>     for the leading INFO columns of A.
        !           288: *> \endverbatim
        !           289: *>
        !           290: *> \param[out] BERR
        !           291: *> \verbatim
        !           292: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           293: *>     Componentwise relative backward error.  This is the
        !           294: *>     componentwise relative backward error of each solution vector X(j)
        !           295: *>     (i.e., the smallest relative change in any element of A or B that
        !           296: *>     makes X(j) an exact solution).
        !           297: *> \endverbatim
        !           298: *>
        !           299: *> \param[in] N_ERR_BNDS
        !           300: *> \verbatim
        !           301: *>          N_ERR_BNDS is INTEGER
        !           302: *>     Number of error bounds to return for each right hand side
        !           303: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           304: *>     ERR_BNDS_COMP below.
        !           305: *> \endverbatim
        !           306: *>
        !           307: *> \param[out] ERR_BNDS_NORM
        !           308: *> \verbatim
        !           309: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           310: *>     For each right-hand side, this array contains information about
        !           311: *>     various error bounds and condition numbers corresponding to the
        !           312: *>     normwise relative error, which is defined as follows:
        !           313: *>
        !           314: *>     Normwise relative error in the ith solution vector:
        !           315: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           316: *>            ------------------------------
        !           317: *>                  max_j abs(X(j,i))
        !           318: *>
        !           319: *>     The array is indexed by the type of error information as described
        !           320: *>     below. There currently are up to three pieces of information
        !           321: *>     returned.
        !           322: *>
        !           323: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           324: *>     right-hand side.
        !           325: *>
        !           326: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           327: *>     three fields:
        !           328: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           329: *>              reciprocal condition number is less than the threshold
        !           330: *>              sqrt(n) * dlamch('Epsilon').
        !           331: *>
        !           332: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           333: *>              almost certainly within a factor of 10 of the true error
        !           334: *>              so long as the next entry is greater than the threshold
        !           335: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           336: *>              be trusted if the previous boolean is true.
        !           337: *>
        !           338: *>     err = 3  Reciprocal condition number: Estimated normwise
        !           339: *>              reciprocal condition number.  Compared with the threshold
        !           340: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           341: *>              estimate is "guaranteed". These reciprocal condition
        !           342: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           343: *>              appropriately scaled matrix Z.
        !           344: *>              Let Z = S*A, where S scales each row by a power of the
        !           345: *>              radix so all absolute row sums of Z are approximately 1.
        !           346: *>
        !           347: *>     See Lapack Working Note 165 for further details and extra
        !           348: *>     cautions.
        !           349: *> \endverbatim
        !           350: *>
        !           351: *> \param[out] ERR_BNDS_COMP
        !           352: *> \verbatim
        !           353: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           354: *>     For each right-hand side, this array contains information about
        !           355: *>     various error bounds and condition numbers corresponding to the
        !           356: *>     componentwise relative error, which is defined as follows:
        !           357: *>
        !           358: *>     Componentwise relative error in the ith solution vector:
        !           359: *>                    abs(XTRUE(j,i) - X(j,i))
        !           360: *>             max_j ----------------------
        !           361: *>                         abs(X(j,i))
        !           362: *>
        !           363: *>     The array is indexed by the right-hand side i (on which the
        !           364: *>     componentwise relative error depends), and the type of error
        !           365: *>     information as described below. There currently are up to three
        !           366: *>     pieces of information returned for each right-hand side. If
        !           367: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           368: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           369: *>     the first (:,N_ERR_BNDS) entries are returned.
        !           370: *>
        !           371: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           372: *>     right-hand side.
        !           373: *>
        !           374: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           375: *>     three fields:
        !           376: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           377: *>              reciprocal condition number is less than the threshold
        !           378: *>              sqrt(n) * dlamch('Epsilon').
        !           379: *>
        !           380: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           381: *>              almost certainly within a factor of 10 of the true error
        !           382: *>              so long as the next entry is greater than the threshold
        !           383: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           384: *>              be trusted if the previous boolean is true.
        !           385: *>
        !           386: *>     err = 3  Reciprocal condition number: Estimated componentwise
        !           387: *>              reciprocal condition number.  Compared with the threshold
        !           388: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           389: *>              estimate is "guaranteed". These reciprocal condition
        !           390: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           391: *>              appropriately scaled matrix Z.
        !           392: *>              Let Z = S*(A*diag(x)), where x is the solution for the
        !           393: *>              current right-hand side and S scales each row of
        !           394: *>              A*diag(x) by a power of the radix so all absolute row
        !           395: *>              sums of Z are approximately 1.
        !           396: *>
        !           397: *>     See Lapack Working Note 165 for further details and extra
        !           398: *>     cautions.
        !           399: *> \endverbatim
        !           400: *>
        !           401: *> \param[in] NPARAMS
        !           402: *> \verbatim
        !           403: *>          NPARAMS is INTEGER
        !           404: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           405: *>     PARAMS array is never referenced and default values are used.
        !           406: *> \endverbatim
        !           407: *>
        !           408: *> \param[in,out] PARAMS
        !           409: *> \verbatim
        !           410: *>          PARAMS is / output) DOUBLE PRECISION array, dimension NPARAMS
        !           411: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           412: *>     that entry will be filled with default value used for that
        !           413: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           414: *>     are used for higher-numbered parameters.
        !           415: *>
        !           416: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           417: *>            refinement or not.
        !           418: *>         Default: 1.0D+0
        !           419: *>            = 0.0 : No refinement is performed, and no error bounds are
        !           420: *>                    computed.
        !           421: *>            = 1.0 : Use the extra-precise refinement algorithm.
        !           422: *>              (other values are reserved for future use)
        !           423: *>
        !           424: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           425: *>            computations allowed for refinement.
        !           426: *>         Default: 10
        !           427: *>         Aggressive: Set to 100 to permit convergence using approximate
        !           428: *>                     factorizations or factorizations other than LU. If
        !           429: *>                     the factorization uses a technique other than
        !           430: *>                     Gaussian elimination, the guarantees in
        !           431: *>                     err_bnds_norm and err_bnds_comp may no longer be
        !           432: *>                     trustworthy.
        !           433: *>
        !           434: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           435: *>            will attempt to find a solution with small componentwise
        !           436: *>            relative error in the double-precision algorithm.  Positive
        !           437: *>            is true, 0.0 is false.
        !           438: *>         Default: 1.0 (attempt componentwise convergence)
        !           439: *> \endverbatim
        !           440: *>
        !           441: *> \param[out] WORK
        !           442: *> \verbatim
        !           443: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           444: *> \endverbatim
        !           445: *>
        !           446: *> \param[out] RWORK
        !           447: *> \verbatim
        !           448: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           449: *> \endverbatim
        !           450: *>
        !           451: *> \param[out] INFO
        !           452: *> \verbatim
        !           453: *>          INFO is INTEGER
        !           454: *>       = 0:  Successful exit. The solution to every right-hand side is
        !           455: *>         guaranteed.
        !           456: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           457: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           458: *>         has been completed, but the factor U is exactly singular, so
        !           459: *>         the solution and error bounds could not be computed. RCOND = 0
        !           460: *>         is returned.
        !           461: *>       = N+J: The solution corresponding to the Jth right-hand side is
        !           462: *>         not guaranteed. The solutions corresponding to other right-
        !           463: *>         hand sides K with K > J may not be guaranteed as well, but
        !           464: *>         only the first such right-hand side is reported. If a small
        !           465: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           466: *>         the Jth right-hand side is the first with a normwise error
        !           467: *>         bound that is not guaranteed (the smallest J such
        !           468: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           469: *>         the Jth right-hand side is the first with either a normwise or
        !           470: *>         componentwise error bound that is not guaranteed (the smallest
        !           471: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           472: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           473: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           474: *>         about all of the right-hand sides check ERR_BNDS_NORM or
        !           475: *>         ERR_BNDS_COMP.
        !           476: *> \endverbatim
        !           477: *
        !           478: *  Authors:
        !           479: *  ========
        !           480: *
        !           481: *> \author Univ. of Tennessee 
        !           482: *> \author Univ. of California Berkeley 
        !           483: *> \author Univ. of Colorado Denver 
        !           484: *> \author NAG Ltd. 
        !           485: *
        !           486: *> \date November 2011
        !           487: *
        !           488: *> \ingroup complex16POsolve
        !           489: *
        !           490: *  =====================================================================
1.1       bertrand  491:       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                    492:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                    493:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    494:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
                    495: *
1.5     ! bertrand  496: *  -- LAPACK driver routine (version 3.4.0) --
        !           497: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           498: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           499: *     November 2011
1.1       bertrand  500: *
                    501: *     .. Scalar Arguments ..
                    502:       CHARACTER          EQUED, FACT, UPLO
                    503:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    504:      $                   N_ERR_BNDS
                    505:       DOUBLE PRECISION   RCOND, RPVGRW
                    506: *     ..
                    507: *     .. Array Arguments ..
                    508:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    509:      $                   WORK( * ), X( LDX, * )
                    510:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                    511:      $                   ERR_BNDS_NORM( NRHS, * ),
                    512:      $                   ERR_BNDS_COMP( NRHS, * )
                    513: *     ..
                    514: *
1.5     ! bertrand  515: *  ==================================================================
1.1       bertrand  516: *
                    517: *     .. Parameters ..
                    518:       DOUBLE PRECISION   ZERO, ONE
                    519:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    520:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    521:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    522:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    523:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    524:      $                   BERR_I = 3 )
                    525:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    526:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    527:      $                   PIV_GROWTH_I = 9 )
                    528: *     ..
                    529: *     .. Local Scalars ..
                    530:       LOGICAL            EQUIL, NOFACT, RCEQU
                    531:       INTEGER            INFEQU, J
                    532:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
                    533: *     ..
                    534: *     .. External Functions ..
                    535:       EXTERNAL           LSAME, DLAMCH, ZLA_PORPVGRW
                    536:       LOGICAL            LSAME
                    537:       DOUBLE PRECISION   DLAMCH, ZLA_PORPVGRW
                    538: *     ..
                    539: *     .. External Subroutines ..
                    540:       EXTERNAL           ZPOCON, ZPOEQUB, ZPOTRF, ZPOTRS, ZLACPY,
                    541:      $                   ZLAQHE, XERBLA, ZLASCL2, ZPORFSX
                    542: *     ..
                    543: *     .. Intrinsic Functions ..
                    544:       INTRINSIC          MAX, MIN
                    545: *     ..
                    546: *     .. Executable Statements ..
                    547: *
                    548:       INFO = 0
                    549:       NOFACT = LSAME( FACT, 'N' )
                    550:       EQUIL = LSAME( FACT, 'E' )
                    551:       SMLNUM = DLAMCH( 'Safe minimum' )
                    552:       BIGNUM = ONE / SMLNUM
                    553:       IF( NOFACT .OR. EQUIL ) THEN
                    554:          EQUED = 'N'
                    555:          RCEQU = .FALSE.
                    556:       ELSE
                    557:          RCEQU = LSAME( EQUED, 'Y' )
                    558:       ENDIF
                    559: *
                    560: *     Default is failure.  If an input parameter is wrong or
                    561: *     factorization fails, make everything look horrible.  Only the
                    562: *     pivot growth is set here, the rest is initialized in ZPORFSX.
                    563: *
                    564:       RPVGRW = ZERO
                    565: *
                    566: *     Test the input parameters.  PARAMS is not tested until ZPORFSX.
                    567: *
                    568:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
                    569:      $     LSAME( FACT, 'F' ) ) THEN
                    570:          INFO = -1
                    571:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
                    572:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
                    573:          INFO = -2
                    574:       ELSE IF( N.LT.0 ) THEN
                    575:          INFO = -3
                    576:       ELSE IF( NRHS.LT.0 ) THEN
                    577:          INFO = -4
                    578:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    579:          INFO = -6
                    580:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    581:          INFO = -8
                    582:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    583:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    584:          INFO = -9
                    585:       ELSE
                    586:          IF ( RCEQU ) THEN
                    587:             SMIN = BIGNUM
                    588:             SMAX = ZERO
                    589:             DO 10 J = 1, N
                    590:                SMIN = MIN( SMIN, S( J ) )
                    591:                SMAX = MAX( SMAX, S( J ) )
                    592:  10         CONTINUE
                    593:             IF( SMIN.LE.ZERO ) THEN
                    594:                INFO = -10
                    595:             ELSE IF( N.GT.0 ) THEN
                    596:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    597:             ELSE
                    598:                SCOND = ONE
                    599:             END IF
                    600:          END IF
                    601:          IF( INFO.EQ.0 ) THEN
                    602:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    603:                INFO = -12
                    604:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    605:                INFO = -14
                    606:             END IF
                    607:          END IF
                    608:       END IF
                    609: *
                    610:       IF( INFO.NE.0 ) THEN
                    611:          CALL XERBLA( 'ZPOSVXX', -INFO )
                    612:          RETURN
                    613:       END IF
                    614: *
                    615:       IF( EQUIL ) THEN
                    616: *
                    617: *     Compute row and column scalings to equilibrate the matrix A.
                    618: *
                    619:          CALL ZPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
                    620:          IF( INFEQU.EQ.0 ) THEN
                    621: *
                    622: *     Equilibrate the matrix.
                    623: *
                    624:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    625:             RCEQU = LSAME( EQUED, 'Y' )
                    626:          END IF
                    627:       END IF
                    628: *
                    629: *     Scale the right-hand side.
                    630: *
                    631:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
                    632: *
                    633:       IF( NOFACT .OR. EQUIL ) THEN
                    634: *
                    635: *        Compute the Cholesky factorization of A.
                    636: *
                    637:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    638:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
                    639: *
                    640: *        Return if INFO is non-zero.
                    641: *
                    642:          IF( INFO.GT.0 ) THEN
                    643: *
                    644: *           Pivot in column INFO is exactly 0
                    645: *           Compute the reciprocal pivot growth factor of the
                    646: *           leading rank-deficient INFO columns of A.
                    647: *
                    648:             RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
                    649:             RETURN
                    650:          END IF
                    651:       END IF
                    652: *
                    653: *     Compute the reciprocal pivot growth factor RPVGRW.
                    654: *
                    655:       RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
                    656: *
                    657: *     Compute the solution matrix X.
                    658: *
                    659:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    660:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
                    661: *
                    662: *     Use iterative refinement to improve the computed solution and
                    663: *     compute error bounds and backward error estimates for it.
                    664: *
                    665:       CALL ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
                    666:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
                    667:      $     ERR_BNDS_COMP,  NPARAMS, PARAMS, WORK, RWORK, INFO )
                    668: 
                    669: *
                    670: *     Scale solutions.
                    671: *
                    672:       IF ( RCEQU ) THEN
                    673:          CALL ZLASCL2( N, NRHS, S, X, LDX )
                    674:       END IF
                    675: *
                    676:       RETURN
                    677: *
                    678: *     End of ZPOSVXX
                    679: *
                    680:       END

CVSweb interface <joel.bertrand@systella.fr>