Annotation of rpl/lapack/lapack/zposvxx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
        !             2:      $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
        !             3:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
        !             4:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
        !             5: *
        !             6: *     -- LAPACK driver routine (version 3.2.2)                          --
        !             7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
        !             8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
        !             9: *     -- June 2010                                                    --
        !            10: *
        !            11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
        !            12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
        !            13: *
        !            14:       IMPLICIT NONE
        !            15: *     ..
        !            16: *     .. Scalar Arguments ..
        !            17:       CHARACTER          EQUED, FACT, UPLO
        !            18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
        !            19:      $                   N_ERR_BNDS
        !            20:       DOUBLE PRECISION   RCOND, RPVGRW
        !            21: *     ..
        !            22: *     .. Array Arguments ..
        !            23:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            24:      $                   WORK( * ), X( LDX, * )
        !            25:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
        !            26:      $                   ERR_BNDS_NORM( NRHS, * ),
        !            27:      $                   ERR_BNDS_COMP( NRHS, * )
        !            28: *     ..
        !            29: *
        !            30: *     Purpose
        !            31: *     =======
        !            32: *
        !            33: *     ZPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
        !            34: *     to compute the solution to a complex*16 system of linear equations
        !            35: *     A * X = B, where A is an N-by-N symmetric positive definite matrix
        !            36: *     and X and B are N-by-NRHS matrices.
        !            37: *
        !            38: *     If requested, both normwise and maximum componentwise error bounds
        !            39: *     are returned. ZPOSVXX will return a solution with a tiny
        !            40: *     guaranteed error (O(eps) where eps is the working machine
        !            41: *     precision) unless the matrix is very ill-conditioned, in which
        !            42: *     case a warning is returned. Relevant condition numbers also are
        !            43: *     calculated and returned.
        !            44: *
        !            45: *     ZPOSVXX accepts user-provided factorizations and equilibration
        !            46: *     factors; see the definitions of the FACT and EQUED options.
        !            47: *     Solving with refinement and using a factorization from a previous
        !            48: *     ZPOSVXX call will also produce a solution with either O(eps)
        !            49: *     errors or warnings, but we cannot make that claim for general
        !            50: *     user-provided factorizations and equilibration factors if they
        !            51: *     differ from what ZPOSVXX would itself produce.
        !            52: *
        !            53: *     Description
        !            54: *     ===========
        !            55: *
        !            56: *     The following steps are performed:
        !            57: *
        !            58: *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
        !            59: *     the system:
        !            60: *
        !            61: *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
        !            62: *
        !            63: *     Whether or not the system will be equilibrated depends on the
        !            64: *     scaling of the matrix A, but if equilibration is used, A is
        !            65: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            66: *
        !            67: *     2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            68: *     factor the matrix A (after equilibration if FACT = 'E') as
        !            69: *        A = U**T* U,  if UPLO = 'U', or
        !            70: *        A = L * L**T,  if UPLO = 'L',
        !            71: *     where U is an upper triangular matrix and L is a lower triangular
        !            72: *     matrix.
        !            73: *
        !            74: *     3. If the leading i-by-i principal minor is not positive definite,
        !            75: *     then the routine returns with INFO = i. Otherwise, the factored
        !            76: *     form of A is used to estimate the condition number of the matrix
        !            77: *     A (see argument RCOND).  If the reciprocal of the condition number
        !            78: *     is less than machine precision, the routine still goes on to solve
        !            79: *     for X and compute error bounds as described below.
        !            80: *
        !            81: *     4. The system of equations is solved for X using the factored form
        !            82: *     of A.
        !            83: *
        !            84: *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
        !            85: *     the routine will use iterative refinement to try to get a small
        !            86: *     error and error bounds.  Refinement calculates the residual to at
        !            87: *     least twice the working precision.
        !            88: *
        !            89: *     6. If equilibration was used, the matrix X is premultiplied by
        !            90: *     diag(S) so that it solves the original system before
        !            91: *     equilibration.
        !            92: *
        !            93: *     Arguments
        !            94: *     =========
        !            95: *
        !            96: *     Some optional parameters are bundled in the PARAMS array.  These
        !            97: *     settings determine how refinement is performed, but often the
        !            98: *     defaults are acceptable.  If the defaults are acceptable, users
        !            99: *     can pass NPARAMS = 0 which prevents the source code from accessing
        !           100: *     the PARAMS argument.
        !           101: *
        !           102: *     FACT    (input) CHARACTER*1
        !           103: *     Specifies whether or not the factored form of the matrix A is
        !           104: *     supplied on entry, and if not, whether the matrix A should be
        !           105: *     equilibrated before it is factored.
        !           106: *       = 'F':  On entry, AF contains the factored form of A.
        !           107: *               If EQUED is not 'N', the matrix A has been
        !           108: *               equilibrated with scaling factors given by S.
        !           109: *               A and AF are not modified.
        !           110: *       = 'N':  The matrix A will be copied to AF and factored.
        !           111: *       = 'E':  The matrix A will be equilibrated if necessary, then
        !           112: *               copied to AF and factored.
        !           113: *
        !           114: *     UPLO    (input) CHARACTER*1
        !           115: *       = 'U':  Upper triangle of A is stored;
        !           116: *       = 'L':  Lower triangle of A is stored.
        !           117: *
        !           118: *     N       (input) INTEGER
        !           119: *     The number of linear equations, i.e., the order of the
        !           120: *     matrix A.  N >= 0.
        !           121: *
        !           122: *     NRHS    (input) INTEGER
        !           123: *     The number of right hand sides, i.e., the number of columns
        !           124: *     of the matrices B and X.  NRHS >= 0.
        !           125: *
        !           126: *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !           127: *     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
        !           128: *     'Y', then A must contain the equilibrated matrix
        !           129: *     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
        !           130: *     triangular part of A contains the upper triangular part of the
        !           131: *     matrix A, and the strictly lower triangular part of A is not
        !           132: *     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
        !           133: *     part of A contains the lower triangular part of the matrix A, and
        !           134: *     the strictly upper triangular part of A is not referenced.  A is
        !           135: *     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
        !           136: *     'N' on exit.
        !           137: *
        !           138: *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           139: *     diag(S)*A*diag(S).
        !           140: *
        !           141: *     LDA     (input) INTEGER
        !           142: *     The leading dimension of the array A.  LDA >= max(1,N).
        !           143: *
        !           144: *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
        !           145: *     If FACT = 'F', then AF is an input argument and on entry
        !           146: *     contains the triangular factor U or L from the Cholesky
        !           147: *     factorization A = U**T*U or A = L*L**T, in the same storage
        !           148: *     format as A.  If EQUED .ne. 'N', then AF is the factored
        !           149: *     form of the equilibrated matrix diag(S)*A*diag(S).
        !           150: *
        !           151: *     If FACT = 'N', then AF is an output argument and on exit
        !           152: *     returns the triangular factor U or L from the Cholesky
        !           153: *     factorization A = U**T*U or A = L*L**T of the original
        !           154: *     matrix A.
        !           155: *
        !           156: *     If FACT = 'E', then AF is an output argument and on exit
        !           157: *     returns the triangular factor U or L from the Cholesky
        !           158: *     factorization A = U**T*U or A = L*L**T of the equilibrated
        !           159: *     matrix A (see the description of A for the form of the
        !           160: *     equilibrated matrix).
        !           161: *
        !           162: *     LDAF    (input) INTEGER
        !           163: *     The leading dimension of the array AF.  LDAF >= max(1,N).
        !           164: *
        !           165: *     EQUED   (input or output) CHARACTER*1
        !           166: *     Specifies the form of equilibration that was done.
        !           167: *       = 'N':  No equilibration (always true if FACT = 'N').
        !           168: *       = 'Y':  Both row and column equilibration, i.e., A has been
        !           169: *               replaced by diag(S) * A * diag(S).
        !           170: *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           171: *     output argument.
        !           172: *
        !           173: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
        !           174: *     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
        !           175: *     the left and right by diag(S).  S is an input argument if FACT =
        !           176: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
        !           177: *     = 'Y', each element of S must be positive.  If S is output, each
        !           178: *     element of S is a power of the radix. If S is input, each element
        !           179: *     of S should be a power of the radix to ensure a reliable solution
        !           180: *     and error estimates. Scaling by powers of the radix does not cause
        !           181: *     rounding errors unless the result underflows or overflows.
        !           182: *     Rounding errors during scaling lead to refining with a matrix that
        !           183: *     is not equivalent to the input matrix, producing error estimates
        !           184: *     that may not be reliable.
        !           185: *
        !           186: *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
        !           187: *     On entry, the N-by-NRHS right hand side matrix B.
        !           188: *     On exit,
        !           189: *     if EQUED = 'N', B is not modified;
        !           190: *     if EQUED = 'Y', B is overwritten by diag(S)*B;
        !           191: *
        !           192: *     LDB     (input) INTEGER
        !           193: *     The leading dimension of the array B.  LDB >= max(1,N).
        !           194: *
        !           195: *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           196: *     If INFO = 0, the N-by-NRHS solution matrix X to the original
        !           197: *     system of equations.  Note that A and B are modified on exit if
        !           198: *     EQUED .ne. 'N', and the solution to the equilibrated system is
        !           199: *     inv(diag(S))*X.
        !           200: *
        !           201: *     LDX     (input) INTEGER
        !           202: *     The leading dimension of the array X.  LDX >= max(1,N).
        !           203: *
        !           204: *     RCOND   (output) DOUBLE PRECISION
        !           205: *     Reciprocal scaled condition number.  This is an estimate of the
        !           206: *     reciprocal Skeel condition number of the matrix A after
        !           207: *     equilibration (if done).  If this is less than the machine
        !           208: *     precision (in particular, if it is zero), the matrix is singular
        !           209: *     to working precision.  Note that the error may still be small even
        !           210: *     if this number is very small and the matrix appears ill-
        !           211: *     conditioned.
        !           212: *
        !           213: *     RPVGRW  (output) DOUBLE PRECISION
        !           214: *     Reciprocal pivot growth.  On exit, this contains the reciprocal
        !           215: *     pivot growth factor norm(A)/norm(U). The "max absolute element"
        !           216: *     norm is used.  If this is much less than 1, then the stability of
        !           217: *     the LU factorization of the (equilibrated) matrix A could be poor.
        !           218: *     This also means that the solution X, estimated condition numbers,
        !           219: *     and error bounds could be unreliable. If factorization fails with
        !           220: *     0<INFO<=N, then this contains the reciprocal pivot growth factor
        !           221: *     for the leading INFO columns of A.
        !           222: *
        !           223: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           224: *     Componentwise relative backward error.  This is the
        !           225: *     componentwise relative backward error of each solution vector X(j)
        !           226: *     (i.e., the smallest relative change in any element of A or B that
        !           227: *     makes X(j) an exact solution).
        !           228: *
        !           229: *     N_ERR_BNDS (input) INTEGER
        !           230: *     Number of error bounds to return for each right hand side
        !           231: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           232: *     ERR_BNDS_COMP below.
        !           233: *
        !           234: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           235: *     For each right-hand side, this array contains information about
        !           236: *     various error bounds and condition numbers corresponding to the
        !           237: *     normwise relative error, which is defined as follows:
        !           238: *
        !           239: *     Normwise relative error in the ith solution vector:
        !           240: *             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           241: *            ------------------------------
        !           242: *                  max_j abs(X(j,i))
        !           243: *
        !           244: *     The array is indexed by the type of error information as described
        !           245: *     below. There currently are up to three pieces of information
        !           246: *     returned.
        !           247: *
        !           248: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           249: *     right-hand side.
        !           250: *
        !           251: *     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           252: *     three fields:
        !           253: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           254: *              reciprocal condition number is less than the threshold
        !           255: *              sqrt(n) * dlamch('Epsilon').
        !           256: *
        !           257: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           258: *              almost certainly within a factor of 10 of the true error
        !           259: *              so long as the next entry is greater than the threshold
        !           260: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           261: *              be trusted if the previous boolean is true.
        !           262: *
        !           263: *     err = 3  Reciprocal condition number: Estimated normwise
        !           264: *              reciprocal condition number.  Compared with the threshold
        !           265: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           266: *              estimate is "guaranteed". These reciprocal condition
        !           267: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           268: *              appropriately scaled matrix Z.
        !           269: *              Let Z = S*A, where S scales each row by a power of the
        !           270: *              radix so all absolute row sums of Z are approximately 1.
        !           271: *
        !           272: *     See Lapack Working Note 165 for further details and extra
        !           273: *     cautions.
        !           274: *
        !           275: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           276: *     For each right-hand side, this array contains information about
        !           277: *     various error bounds and condition numbers corresponding to the
        !           278: *     componentwise relative error, which is defined as follows:
        !           279: *
        !           280: *     Componentwise relative error in the ith solution vector:
        !           281: *                    abs(XTRUE(j,i) - X(j,i))
        !           282: *             max_j ----------------------
        !           283: *                         abs(X(j,i))
        !           284: *
        !           285: *     The array is indexed by the right-hand side i (on which the
        !           286: *     componentwise relative error depends), and the type of error
        !           287: *     information as described below. There currently are up to three
        !           288: *     pieces of information returned for each right-hand side. If
        !           289: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           290: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           291: *     the first (:,N_ERR_BNDS) entries are returned.
        !           292: *
        !           293: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           294: *     right-hand side.
        !           295: *
        !           296: *     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           297: *     three fields:
        !           298: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           299: *              reciprocal condition number is less than the threshold
        !           300: *              sqrt(n) * dlamch('Epsilon').
        !           301: *
        !           302: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           303: *              almost certainly within a factor of 10 of the true error
        !           304: *              so long as the next entry is greater than the threshold
        !           305: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           306: *              be trusted if the previous boolean is true.
        !           307: *
        !           308: *     err = 3  Reciprocal condition number: Estimated componentwise
        !           309: *              reciprocal condition number.  Compared with the threshold
        !           310: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           311: *              estimate is "guaranteed". These reciprocal condition
        !           312: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           313: *              appropriately scaled matrix Z.
        !           314: *              Let Z = S*(A*diag(x)), where x is the solution for the
        !           315: *              current right-hand side and S scales each row of
        !           316: *              A*diag(x) by a power of the radix so all absolute row
        !           317: *              sums of Z are approximately 1.
        !           318: *
        !           319: *     See Lapack Working Note 165 for further details and extra
        !           320: *     cautions.
        !           321: *
        !           322: *     NPARAMS (input) INTEGER
        !           323: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           324: *     PARAMS array is never referenced and default values are used.
        !           325: *
        !           326: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
        !           327: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           328: *     that entry will be filled with default value used for that
        !           329: *     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           330: *     are used for higher-numbered parameters.
        !           331: *
        !           332: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           333: *            refinement or not.
        !           334: *         Default: 1.0D+0
        !           335: *            = 0.0 : No refinement is performed, and no error bounds are
        !           336: *                    computed.
        !           337: *            = 1.0 : Use the extra-precise refinement algorithm.
        !           338: *              (other values are reserved for future use)
        !           339: *
        !           340: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           341: *            computations allowed for refinement.
        !           342: *         Default: 10
        !           343: *         Aggressive: Set to 100 to permit convergence using approximate
        !           344: *                     factorizations or factorizations other than LU. If
        !           345: *                     the factorization uses a technique other than
        !           346: *                     Gaussian elimination, the guarantees in
        !           347: *                     err_bnds_norm and err_bnds_comp may no longer be
        !           348: *                     trustworthy.
        !           349: *
        !           350: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           351: *            will attempt to find a solution with small componentwise
        !           352: *            relative error in the double-precision algorithm.  Positive
        !           353: *            is true, 0.0 is false.
        !           354: *         Default: 1.0 (attempt componentwise convergence)
        !           355: *
        !           356: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           357: *
        !           358: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           359: *
        !           360: *     INFO    (output) INTEGER
        !           361: *       = 0:  Successful exit. The solution to every right-hand side is
        !           362: *         guaranteed.
        !           363: *       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           364: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           365: *         has been completed, but the factor U is exactly singular, so
        !           366: *         the solution and error bounds could not be computed. RCOND = 0
        !           367: *         is returned.
        !           368: *       = N+J: The solution corresponding to the Jth right-hand side is
        !           369: *         not guaranteed. The solutions corresponding to other right-
        !           370: *         hand sides K with K > J may not be guaranteed as well, but
        !           371: *         only the first such right-hand side is reported. If a small
        !           372: *         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           373: *         the Jth right-hand side is the first with a normwise error
        !           374: *         bound that is not guaranteed (the smallest J such
        !           375: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           376: *         the Jth right-hand side is the first with either a normwise or
        !           377: *         componentwise error bound that is not guaranteed (the smallest
        !           378: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           379: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           380: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           381: *         about all of the right-hand sides check ERR_BNDS_NORM or
        !           382: *         ERR_BNDS_COMP.
        !           383: *
        !           384: *     ==================================================================
        !           385: *
        !           386: *     .. Parameters ..
        !           387:       DOUBLE PRECISION   ZERO, ONE
        !           388:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           389:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
        !           390:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
        !           391:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
        !           392:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
        !           393:      $                   BERR_I = 3 )
        !           394:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
        !           395:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
        !           396:      $                   PIV_GROWTH_I = 9 )
        !           397: *     ..
        !           398: *     .. Local Scalars ..
        !           399:       LOGICAL            EQUIL, NOFACT, RCEQU
        !           400:       INTEGER            INFEQU, J
        !           401:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
        !           402: *     ..
        !           403: *     .. External Functions ..
        !           404:       EXTERNAL           LSAME, DLAMCH, ZLA_PORPVGRW
        !           405:       LOGICAL            LSAME
        !           406:       DOUBLE PRECISION   DLAMCH, ZLA_PORPVGRW
        !           407: *     ..
        !           408: *     .. External Subroutines ..
        !           409:       EXTERNAL           ZPOCON, ZPOEQUB, ZPOTRF, ZPOTRS, ZLACPY,
        !           410:      $                   ZLAQHE, XERBLA, ZLASCL2, ZPORFSX
        !           411: *     ..
        !           412: *     .. Intrinsic Functions ..
        !           413:       INTRINSIC          MAX, MIN
        !           414: *     ..
        !           415: *     .. Executable Statements ..
        !           416: *
        !           417:       INFO = 0
        !           418:       NOFACT = LSAME( FACT, 'N' )
        !           419:       EQUIL = LSAME( FACT, 'E' )
        !           420:       SMLNUM = DLAMCH( 'Safe minimum' )
        !           421:       BIGNUM = ONE / SMLNUM
        !           422:       IF( NOFACT .OR. EQUIL ) THEN
        !           423:          EQUED = 'N'
        !           424:          RCEQU = .FALSE.
        !           425:       ELSE
        !           426:          RCEQU = LSAME( EQUED, 'Y' )
        !           427:       ENDIF
        !           428: *
        !           429: *     Default is failure.  If an input parameter is wrong or
        !           430: *     factorization fails, make everything look horrible.  Only the
        !           431: *     pivot growth is set here, the rest is initialized in ZPORFSX.
        !           432: *
        !           433:       RPVGRW = ZERO
        !           434: *
        !           435: *     Test the input parameters.  PARAMS is not tested until ZPORFSX.
        !           436: *
        !           437:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
        !           438:      $     LSAME( FACT, 'F' ) ) THEN
        !           439:          INFO = -1
        !           440:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
        !           441:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           442:          INFO = -2
        !           443:       ELSE IF( N.LT.0 ) THEN
        !           444:          INFO = -3
        !           445:       ELSE IF( NRHS.LT.0 ) THEN
        !           446:          INFO = -4
        !           447:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           448:          INFO = -6
        !           449:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        !           450:          INFO = -8
        !           451:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
        !           452:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
        !           453:          INFO = -9
        !           454:       ELSE
        !           455:          IF ( RCEQU ) THEN
        !           456:             SMIN = BIGNUM
        !           457:             SMAX = ZERO
        !           458:             DO 10 J = 1, N
        !           459:                SMIN = MIN( SMIN, S( J ) )
        !           460:                SMAX = MAX( SMAX, S( J ) )
        !           461:  10         CONTINUE
        !           462:             IF( SMIN.LE.ZERO ) THEN
        !           463:                INFO = -10
        !           464:             ELSE IF( N.GT.0 ) THEN
        !           465:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
        !           466:             ELSE
        !           467:                SCOND = ONE
        !           468:             END IF
        !           469:          END IF
        !           470:          IF( INFO.EQ.0 ) THEN
        !           471:             IF( LDB.LT.MAX( 1, N ) ) THEN
        !           472:                INFO = -12
        !           473:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           474:                INFO = -14
        !           475:             END IF
        !           476:          END IF
        !           477:       END IF
        !           478: *
        !           479:       IF( INFO.NE.0 ) THEN
        !           480:          CALL XERBLA( 'ZPOSVXX', -INFO )
        !           481:          RETURN
        !           482:       END IF
        !           483: *
        !           484:       IF( EQUIL ) THEN
        !           485: *
        !           486: *     Compute row and column scalings to equilibrate the matrix A.
        !           487: *
        !           488:          CALL ZPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
        !           489:          IF( INFEQU.EQ.0 ) THEN
        !           490: *
        !           491: *     Equilibrate the matrix.
        !           492: *
        !           493:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
        !           494:             RCEQU = LSAME( EQUED, 'Y' )
        !           495:          END IF
        !           496:       END IF
        !           497: *
        !           498: *     Scale the right-hand side.
        !           499: *
        !           500:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
        !           501: *
        !           502:       IF( NOFACT .OR. EQUIL ) THEN
        !           503: *
        !           504: *        Compute the Cholesky factorization of A.
        !           505: *
        !           506:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
        !           507:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
        !           508: *
        !           509: *        Return if INFO is non-zero.
        !           510: *
        !           511:          IF( INFO.GT.0 ) THEN
        !           512: *
        !           513: *           Pivot in column INFO is exactly 0
        !           514: *           Compute the reciprocal pivot growth factor of the
        !           515: *           leading rank-deficient INFO columns of A.
        !           516: *
        !           517:             RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
        !           518:             RETURN
        !           519:          END IF
        !           520:       END IF
        !           521: *
        !           522: *     Compute the reciprocal pivot growth factor RPVGRW.
        !           523: *
        !           524:       RPVGRW = ZLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, RWORK )
        !           525: *
        !           526: *     Compute the solution matrix X.
        !           527: *
        !           528:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           529:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
        !           530: *
        !           531: *     Use iterative refinement to improve the computed solution and
        !           532: *     compute error bounds and backward error estimates for it.
        !           533: *
        !           534:       CALL ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
        !           535:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
        !           536:      $     ERR_BNDS_COMP,  NPARAMS, PARAMS, WORK, RWORK, INFO )
        !           537: 
        !           538: *
        !           539: *     Scale solutions.
        !           540: *
        !           541:       IF ( RCEQU ) THEN
        !           542:          CALL ZLASCL2( N, NRHS, S, X, LDX )
        !           543:       END IF
        !           544: *
        !           545:       RETURN
        !           546: *
        !           547: *     End of ZPOSVXX
        !           548: *
        !           549:       END

CVSweb interface <joel.bertrand@systella.fr>