File:  [local] / rpl / lapack / lapack / zposvx.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:37 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
    2:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
    3:      $                   RWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, UPLO
   12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
   17:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   18:      $                   WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
   25: *  compute the solution to a complex system of linear equations
   26: *     A * X = B,
   27: *  where A is an N-by-N Hermitian positive definite matrix and X and B
   28: *  are N-by-NRHS matrices.
   29: *
   30: *  Error bounds on the solution and a condition estimate are also
   31: *  provided.
   32: *
   33: *  Description
   34: *  ===========
   35: *
   36: *  The following steps are performed:
   37: *
   38: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   39: *     the system:
   40: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   41: *     Whether or not the system will be equilibrated depends on the
   42: *     scaling of the matrix A, but if equilibration is used, A is
   43: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   44: *
   45: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   46: *     factor the matrix A (after equilibration if FACT = 'E') as
   47: *        A = U**H* U,  if UPLO = 'U', or
   48: *        A = L * L**H,  if UPLO = 'L',
   49: *     where U is an upper triangular matrix and L is a lower triangular
   50: *     matrix.
   51: *
   52: *  3. If the leading i-by-i principal minor is not positive definite,
   53: *     then the routine returns with INFO = i. Otherwise, the factored
   54: *     form of A is used to estimate the condition number of the matrix
   55: *     A.  If the reciprocal of the condition number is less than machine
   56: *     precision, INFO = N+1 is returned as a warning, but the routine
   57: *     still goes on to solve for X and compute error bounds as
   58: *     described below.
   59: *
   60: *  4. The system of equations is solved for X using the factored form
   61: *     of A.
   62: *
   63: *  5. Iterative refinement is applied to improve the computed solution
   64: *     matrix and calculate error bounds and backward error estimates
   65: *     for it.
   66: *
   67: *  6. If equilibration was used, the matrix X is premultiplied by
   68: *     diag(S) so that it solves the original system before
   69: *     equilibration.
   70: *
   71: *  Arguments
   72: *  =========
   73: *
   74: *  FACT    (input) CHARACTER*1
   75: *          Specifies whether or not the factored form of the matrix A is
   76: *          supplied on entry, and if not, whether the matrix A should be
   77: *          equilibrated before it is factored.
   78: *          = 'F':  On entry, AF contains the factored form of A.
   79: *                  If EQUED = 'Y', the matrix A has been equilibrated
   80: *                  with scaling factors given by S.  A and AF will not
   81: *                  be modified.
   82: *          = 'N':  The matrix A will be copied to AF and factored.
   83: *          = 'E':  The matrix A will be equilibrated if necessary, then
   84: *                  copied to AF and factored.
   85: *
   86: *  UPLO    (input) CHARACTER*1
   87: *          = 'U':  Upper triangle of A is stored;
   88: *          = 'L':  Lower triangle of A is stored.
   89: *
   90: *  N       (input) INTEGER
   91: *          The number of linear equations, i.e., the order of the
   92: *          matrix A.  N >= 0.
   93: *
   94: *  NRHS    (input) INTEGER
   95: *          The number of right hand sides, i.e., the number of columns
   96: *          of the matrices B and X.  NRHS >= 0.
   97: *
   98: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   99: *          On entry, the Hermitian matrix A, except if FACT = 'F' and
  100: *          EQUED = 'Y', then A must contain the equilibrated matrix
  101: *          diag(S)*A*diag(S).  If UPLO = 'U', the leading
  102: *          N-by-N upper triangular part of A contains the upper
  103: *          triangular part of the matrix A, and the strictly lower
  104: *          triangular part of A is not referenced.  If UPLO = 'L', the
  105: *          leading N-by-N lower triangular part of A contains the lower
  106: *          triangular part of the matrix A, and the strictly upper
  107: *          triangular part of A is not referenced.  A is not modified if
  108: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  109: *
  110: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  111: *          diag(S)*A*diag(S).
  112: *
  113: *  LDA     (input) INTEGER
  114: *          The leading dimension of the array A.  LDA >= max(1,N).
  115: *
  116: *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
  117: *          If FACT = 'F', then AF is an input argument and on entry
  118: *          contains the triangular factor U or L from the Cholesky
  119: *          factorization A = U**H*U or A = L*L**H, in the same storage
  120: *          format as A.  If EQUED .ne. 'N', then AF is the factored form
  121: *          of the equilibrated matrix diag(S)*A*diag(S).
  122: *
  123: *          If FACT = 'N', then AF is an output argument and on exit
  124: *          returns the triangular factor U or L from the Cholesky
  125: *          factorization A = U**H*U or A = L*L**H of the original
  126: *          matrix A.
  127: *
  128: *          If FACT = 'E', then AF is an output argument and on exit
  129: *          returns the triangular factor U or L from the Cholesky
  130: *          factorization A = U**H*U or A = L*L**H of the equilibrated
  131: *          matrix A (see the description of A for the form of the
  132: *          equilibrated matrix).
  133: *
  134: *  LDAF    (input) INTEGER
  135: *          The leading dimension of the array AF.  LDAF >= max(1,N).
  136: *
  137: *  EQUED   (input or output) CHARACTER*1
  138: *          Specifies the form of equilibration that was done.
  139: *          = 'N':  No equilibration (always true if FACT = 'N').
  140: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
  141: *                  diag(S) * A * diag(S).
  142: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  143: *          output argument.
  144: *
  145: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
  146: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
  147: *          an input argument if FACT = 'F'; otherwise, S is an output
  148: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  149: *          must be positive.
  150: *
  151: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
  152: *          On entry, the N-by-NRHS righthand side matrix B.
  153: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  154: *          B is overwritten by diag(S) * B.
  155: *
  156: *  LDB     (input) INTEGER
  157: *          The leading dimension of the array B.  LDB >= max(1,N).
  158: *
  159: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
  160: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  161: *          the original system of equations.  Note that if EQUED = 'Y',
  162: *          A and B are modified on exit, and the solution to the
  163: *          equilibrated system is inv(diag(S))*X.
  164: *
  165: *  LDX     (input) INTEGER
  166: *          The leading dimension of the array X.  LDX >= max(1,N).
  167: *
  168: *  RCOND   (output) DOUBLE PRECISION
  169: *          The estimate of the reciprocal condition number of the matrix
  170: *          A after equilibration (if done).  If RCOND is less than the
  171: *          machine precision (in particular, if RCOND = 0), the matrix
  172: *          is singular to working precision.  This condition is
  173: *          indicated by a return code of INFO > 0.
  174: *
  175: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  176: *          The estimated forward error bound for each solution vector
  177: *          X(j) (the j-th column of the solution matrix X).
  178: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  179: *          is an estimated upper bound for the magnitude of the largest
  180: *          element in (X(j) - XTRUE) divided by the magnitude of the
  181: *          largest element in X(j).  The estimate is as reliable as
  182: *          the estimate for RCOND, and is almost always a slight
  183: *          overestimate of the true error.
  184: *
  185: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  186: *          The componentwise relative backward error of each solution
  187: *          vector X(j) (i.e., the smallest relative change in
  188: *          any element of A or B that makes X(j) an exact solution).
  189: *
  190: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  191: *
  192: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
  193: *
  194: *  INFO    (output) INTEGER
  195: *          = 0: successful exit
  196: *          < 0: if INFO = -i, the i-th argument had an illegal value
  197: *          > 0: if INFO = i, and i is
  198: *                <= N:  the leading minor of order i of A is
  199: *                       not positive definite, so the factorization
  200: *                       could not be completed, and the solution has not
  201: *                       been computed. RCOND = 0 is returned.
  202: *                = N+1: U is nonsingular, but RCOND is less than machine
  203: *                       precision, meaning that the matrix is singular
  204: *                       to working precision.  Nevertheless, the
  205: *                       solution and error bounds are computed because
  206: *                       there are a number of situations where the
  207: *                       computed solution can be more accurate than the
  208: *                       value of RCOND would suggest.
  209: *
  210: *  =====================================================================
  211: *
  212: *     .. Parameters ..
  213:       DOUBLE PRECISION   ZERO, ONE
  214:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  215: *     ..
  216: *     .. Local Scalars ..
  217:       LOGICAL            EQUIL, NOFACT, RCEQU
  218:       INTEGER            I, INFEQU, J
  219:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  220: *     ..
  221: *     .. External Functions ..
  222:       LOGICAL            LSAME
  223:       DOUBLE PRECISION   DLAMCH, ZLANHE
  224:       EXTERNAL           LSAME, DLAMCH, ZLANHE
  225: *     ..
  226: *     .. External Subroutines ..
  227:       EXTERNAL           XERBLA, ZLACPY, ZLAQHE, ZPOCON, ZPOEQU, ZPORFS,
  228:      $                   ZPOTRF, ZPOTRS
  229: *     ..
  230: *     .. Intrinsic Functions ..
  231:       INTRINSIC          MAX, MIN
  232: *     ..
  233: *     .. Executable Statements ..
  234: *
  235:       INFO = 0
  236:       NOFACT = LSAME( FACT, 'N' )
  237:       EQUIL = LSAME( FACT, 'E' )
  238:       IF( NOFACT .OR. EQUIL ) THEN
  239:          EQUED = 'N'
  240:          RCEQU = .FALSE.
  241:       ELSE
  242:          RCEQU = LSAME( EQUED, 'Y' )
  243:          SMLNUM = DLAMCH( 'Safe minimum' )
  244:          BIGNUM = ONE / SMLNUM
  245:       END IF
  246: *
  247: *     Test the input parameters.
  248: *
  249:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  250:      $     THEN
  251:          INFO = -1
  252:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  253:      $          THEN
  254:          INFO = -2
  255:       ELSE IF( N.LT.0 ) THEN
  256:          INFO = -3
  257:       ELSE IF( NRHS.LT.0 ) THEN
  258:          INFO = -4
  259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  260:          INFO = -6
  261:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  262:          INFO = -8
  263:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  264:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  265:          INFO = -9
  266:       ELSE
  267:          IF( RCEQU ) THEN
  268:             SMIN = BIGNUM
  269:             SMAX = ZERO
  270:             DO 10 J = 1, N
  271:                SMIN = MIN( SMIN, S( J ) )
  272:                SMAX = MAX( SMAX, S( J ) )
  273:    10       CONTINUE
  274:             IF( SMIN.LE.ZERO ) THEN
  275:                INFO = -10
  276:             ELSE IF( N.GT.0 ) THEN
  277:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  278:             ELSE
  279:                SCOND = ONE
  280:             END IF
  281:          END IF
  282:          IF( INFO.EQ.0 ) THEN
  283:             IF( LDB.LT.MAX( 1, N ) ) THEN
  284:                INFO = -12
  285:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  286:                INFO = -14
  287:             END IF
  288:          END IF
  289:       END IF
  290: *
  291:       IF( INFO.NE.0 ) THEN
  292:          CALL XERBLA( 'ZPOSVX', -INFO )
  293:          RETURN
  294:       END IF
  295: *
  296:       IF( EQUIL ) THEN
  297: *
  298: *        Compute row and column scalings to equilibrate the matrix A.
  299: *
  300:          CALL ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  301:          IF( INFEQU.EQ.0 ) THEN
  302: *
  303: *           Equilibrate the matrix.
  304: *
  305:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  306:             RCEQU = LSAME( EQUED, 'Y' )
  307:          END IF
  308:       END IF
  309: *
  310: *     Scale the right hand side.
  311: *
  312:       IF( RCEQU ) THEN
  313:          DO 30 J = 1, NRHS
  314:             DO 20 I = 1, N
  315:                B( I, J ) = S( I )*B( I, J )
  316:    20       CONTINUE
  317:    30    CONTINUE
  318:       END IF
  319: *
  320:       IF( NOFACT .OR. EQUIL ) THEN
  321: *
  322: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
  323: *
  324:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  325:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
  326: *
  327: *        Return if INFO is non-zero.
  328: *
  329:          IF( INFO.GT.0 )THEN
  330:             RCOND = ZERO
  331:             RETURN
  332:          END IF
  333:       END IF
  334: *
  335: *     Compute the norm of the matrix A.
  336: *
  337:       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  338: *
  339: *     Compute the reciprocal of the condition number of A.
  340: *
  341:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
  342: *
  343: *     Compute the solution matrix X.
  344: *
  345:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  346:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  347: *
  348: *     Use iterative refinement to improve the computed solution and
  349: *     compute error bounds and backward error estimates for it.
  350: *
  351:       CALL ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  352:      $             FERR, BERR, WORK, RWORK, INFO )
  353: *
  354: *     Transform the solution matrix X to a solution of the original
  355: *     system.
  356: *
  357:       IF( RCEQU ) THEN
  358:          DO 50 J = 1, NRHS
  359:             DO 40 I = 1, N
  360:                X( I, J ) = S( I )*X( I, J )
  361:    40       CONTINUE
  362:    50    CONTINUE
  363:          DO 60 J = 1, NRHS
  364:             FERR( J ) = FERR( J ) / SCOND
  365:    60    CONTINUE
  366:       END IF
  367: *
  368: *     Set INFO = N+1 if the matrix is singular to working precision.
  369: *
  370:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  371:      $   INFO = N + 1
  372: *
  373:       RETURN
  374: *
  375: *     End of ZPOSVX
  376: *
  377:       END

CVSweb interface <joel.bertrand@systella.fr>