File:  [local] / rpl / lapack / lapack / zposvx.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:34 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPOSVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
   22: *                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
   23: *                          RWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EQUED, FACT, UPLO
   27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
   32: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   33: *      $                   WORK( * ), X( LDX, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
   43: *> compute the solution to a complex system of linear equations
   44: *>    A * X = B,
   45: *> where A is an N-by-N Hermitian positive definite matrix and X and B
   46: *> are N-by-NRHS matrices.
   47: *>
   48: *> Error bounds on the solution and a condition estimate are also
   49: *> provided.
   50: *> \endverbatim
   51: *
   52: *> \par Description:
   53: *  =================
   54: *>
   55: *> \verbatim
   56: *>
   57: *> The following steps are performed:
   58: *>
   59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   60: *>    the system:
   61: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   62: *>    Whether or not the system will be equilibrated depends on the
   63: *>    scaling of the matrix A, but if equilibration is used, A is
   64: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   65: *>
   66: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   67: *>    factor the matrix A (after equilibration if FACT = 'E') as
   68: *>       A = U**H* U,  if UPLO = 'U', or
   69: *>       A = L * L**H,  if UPLO = 'L',
   70: *>    where U is an upper triangular matrix and L is a lower triangular
   71: *>    matrix.
   72: *>
   73: *> 3. If the leading i-by-i principal minor is not positive definite,
   74: *>    then the routine returns with INFO = i. Otherwise, the factored
   75: *>    form of A is used to estimate the condition number of the matrix
   76: *>    A.  If the reciprocal of the condition number is less than machine
   77: *>    precision, INFO = N+1 is returned as a warning, but the routine
   78: *>    still goes on to solve for X and compute error bounds as
   79: *>    described below.
   80: *>
   81: *> 4. The system of equations is solved for X using the factored form
   82: *>    of A.
   83: *>
   84: *> 5. Iterative refinement is applied to improve the computed solution
   85: *>    matrix and calculate error bounds and backward error estimates
   86: *>    for it.
   87: *>
   88: *> 6. If equilibration was used, the matrix X is premultiplied by
   89: *>    diag(S) so that it solves the original system before
   90: *>    equilibration.
   91: *> \endverbatim
   92: *
   93: *  Arguments:
   94: *  ==========
   95: *
   96: *> \param[in] FACT
   97: *> \verbatim
   98: *>          FACT is CHARACTER*1
   99: *>          Specifies whether or not the factored form of the matrix A is
  100: *>          supplied on entry, and if not, whether the matrix A should be
  101: *>          equilibrated before it is factored.
  102: *>          = 'F':  On entry, AF contains the factored form of A.
  103: *>                  If EQUED = 'Y', the matrix A has been equilibrated
  104: *>                  with scaling factors given by S.  A and AF will not
  105: *>                  be modified.
  106: *>          = 'N':  The matrix A will be copied to AF and factored.
  107: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  108: *>                  copied to AF and factored.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] UPLO
  112: *> \verbatim
  113: *>          UPLO is CHARACTER*1
  114: *>          = 'U':  Upper triangle of A is stored;
  115: *>          = 'L':  Lower triangle of A is stored.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] N
  119: *> \verbatim
  120: *>          N is INTEGER
  121: *>          The number of linear equations, i.e., the order of the
  122: *>          matrix A.  N >= 0.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] NRHS
  126: *> \verbatim
  127: *>          NRHS is INTEGER
  128: *>          The number of right hand sides, i.e., the number of columns
  129: *>          of the matrices B and X.  NRHS >= 0.
  130: *> \endverbatim
  131: *>
  132: *> \param[in,out] A
  133: *> \verbatim
  134: *>          A is COMPLEX*16 array, dimension (LDA,N)
  135: *>          On entry, the Hermitian matrix A, except if FACT = 'F' and
  136: *>          EQUED = 'Y', then A must contain the equilibrated matrix
  137: *>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
  138: *>          N-by-N upper triangular part of A contains the upper
  139: *>          triangular part of the matrix A, and the strictly lower
  140: *>          triangular part of A is not referenced.  If UPLO = 'L', the
  141: *>          leading N-by-N lower triangular part of A contains the lower
  142: *>          triangular part of the matrix A, and the strictly upper
  143: *>          triangular part of A is not referenced.  A is not modified if
  144: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  145: *>
  146: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  147: *>          diag(S)*A*diag(S).
  148: *> \endverbatim
  149: *>
  150: *> \param[in] LDA
  151: *> \verbatim
  152: *>          LDA is INTEGER
  153: *>          The leading dimension of the array A.  LDA >= max(1,N).
  154: *> \endverbatim
  155: *>
  156: *> \param[in,out] AF
  157: *> \verbatim
  158: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  159: *>          If FACT = 'F', then AF is an input argument and on entry
  160: *>          contains the triangular factor U or L from the Cholesky
  161: *>          factorization A = U**H *U or A = L*L**H, in the same storage
  162: *>          format as A.  If EQUED .ne. 'N', then AF is the factored form
  163: *>          of the equilibrated matrix diag(S)*A*diag(S).
  164: *>
  165: *>          If FACT = 'N', then AF is an output argument and on exit
  166: *>          returns the triangular factor U or L from the Cholesky
  167: *>          factorization A = U**H *U or A = L*L**H of the original
  168: *>          matrix A.
  169: *>
  170: *>          If FACT = 'E', then AF is an output argument and on exit
  171: *>          returns the triangular factor U or L from the Cholesky
  172: *>          factorization A = U**H *U or A = L*L**H of the equilibrated
  173: *>          matrix A (see the description of A for the form of the
  174: *>          equilibrated matrix).
  175: *> \endverbatim
  176: *>
  177: *> \param[in] LDAF
  178: *> \verbatim
  179: *>          LDAF is INTEGER
  180: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  181: *> \endverbatim
  182: *>
  183: *> \param[in,out] EQUED
  184: *> \verbatim
  185: *>          EQUED is CHARACTER*1
  186: *>          Specifies the form of equilibration that was done.
  187: *>          = 'N':  No equilibration (always true if FACT = 'N').
  188: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
  189: *>                  diag(S) * A * diag(S).
  190: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  191: *>          output argument.
  192: *> \endverbatim
  193: *>
  194: *> \param[in,out] S
  195: *> \verbatim
  196: *>          S is DOUBLE PRECISION array, dimension (N)
  197: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
  198: *>          an input argument if FACT = 'F'; otherwise, S is an output
  199: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  200: *>          must be positive.
  201: *> \endverbatim
  202: *>
  203: *> \param[in,out] B
  204: *> \verbatim
  205: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  206: *>          On entry, the N-by-NRHS righthand side matrix B.
  207: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  208: *>          B is overwritten by diag(S) * B.
  209: *> \endverbatim
  210: *>
  211: *> \param[in] LDB
  212: *> \verbatim
  213: *>          LDB is INTEGER
  214: *>          The leading dimension of the array B.  LDB >= max(1,N).
  215: *> \endverbatim
  216: *>
  217: *> \param[out] X
  218: *> \verbatim
  219: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  220: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  221: *>          the original system of equations.  Note that if EQUED = 'Y',
  222: *>          A and B are modified on exit, and the solution to the
  223: *>          equilibrated system is inv(diag(S))*X.
  224: *> \endverbatim
  225: *>
  226: *> \param[in] LDX
  227: *> \verbatim
  228: *>          LDX is INTEGER
  229: *>          The leading dimension of the array X.  LDX >= max(1,N).
  230: *> \endverbatim
  231: *>
  232: *> \param[out] RCOND
  233: *> \verbatim
  234: *>          RCOND is DOUBLE PRECISION
  235: *>          The estimate of the reciprocal condition number of the matrix
  236: *>          A after equilibration (if done).  If RCOND is less than the
  237: *>          machine precision (in particular, if RCOND = 0), the matrix
  238: *>          is singular to working precision.  This condition is
  239: *>          indicated by a return code of INFO > 0.
  240: *> \endverbatim
  241: *>
  242: *> \param[out] FERR
  243: *> \verbatim
  244: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  245: *>          The estimated forward error bound for each solution vector
  246: *>          X(j) (the j-th column of the solution matrix X).
  247: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  248: *>          is an estimated upper bound for the magnitude of the largest
  249: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  250: *>          largest element in X(j).  The estimate is as reliable as
  251: *>          the estimate for RCOND, and is almost always a slight
  252: *>          overestimate of the true error.
  253: *> \endverbatim
  254: *>
  255: *> \param[out] BERR
  256: *> \verbatim
  257: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  258: *>          The componentwise relative backward error of each solution
  259: *>          vector X(j) (i.e., the smallest relative change in
  260: *>          any element of A or B that makes X(j) an exact solution).
  261: *> \endverbatim
  262: *>
  263: *> \param[out] WORK
  264: *> \verbatim
  265: *>          WORK is COMPLEX*16 array, dimension (2*N)
  266: *> \endverbatim
  267: *>
  268: *> \param[out] RWORK
  269: *> \verbatim
  270: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  271: *> \endverbatim
  272: *>
  273: *> \param[out] INFO
  274: *> \verbatim
  275: *>          INFO is INTEGER
  276: *>          = 0: successful exit
  277: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  278: *>          > 0: if INFO = i, and i is
  279: *>                <= N:  the leading minor of order i of A is
  280: *>                       not positive definite, so the factorization
  281: *>                       could not be completed, and the solution has not
  282: *>                       been computed. RCOND = 0 is returned.
  283: *>                = N+1: U is nonsingular, but RCOND is less than machine
  284: *>                       precision, meaning that the matrix is singular
  285: *>                       to working precision.  Nevertheless, the
  286: *>                       solution and error bounds are computed because
  287: *>                       there are a number of situations where the
  288: *>                       computed solution can be more accurate than the
  289: *>                       value of RCOND would suggest.
  290: *> \endverbatim
  291: *
  292: *  Authors:
  293: *  ========
  294: *
  295: *> \author Univ. of Tennessee
  296: *> \author Univ. of California Berkeley
  297: *> \author Univ. of Colorado Denver
  298: *> \author NAG Ltd.
  299: *
  300: *> \ingroup complex16POsolve
  301: *
  302: *  =====================================================================
  303:       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  304:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  305:      $                   RWORK, INFO )
  306: *
  307: *  -- LAPACK driver routine --
  308: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  309: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  310: *
  311: *     .. Scalar Arguments ..
  312:       CHARACTER          EQUED, FACT, UPLO
  313:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  314:       DOUBLE PRECISION   RCOND
  315: *     ..
  316: *     .. Array Arguments ..
  317:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
  318:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  319:      $                   WORK( * ), X( LDX, * )
  320: *     ..
  321: *
  322: *  =====================================================================
  323: *
  324: *     .. Parameters ..
  325:       DOUBLE PRECISION   ZERO, ONE
  326:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  327: *     ..
  328: *     .. Local Scalars ..
  329:       LOGICAL            EQUIL, NOFACT, RCEQU
  330:       INTEGER            I, INFEQU, J
  331:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  332: *     ..
  333: *     .. External Functions ..
  334:       LOGICAL            LSAME
  335:       DOUBLE PRECISION   DLAMCH, ZLANHE
  336:       EXTERNAL           LSAME, DLAMCH, ZLANHE
  337: *     ..
  338: *     .. External Subroutines ..
  339:       EXTERNAL           XERBLA, ZLACPY, ZLAQHE, ZPOCON, ZPOEQU, ZPORFS,
  340:      $                   ZPOTRF, ZPOTRS
  341: *     ..
  342: *     .. Intrinsic Functions ..
  343:       INTRINSIC          MAX, MIN
  344: *     ..
  345: *     .. Executable Statements ..
  346: *
  347:       INFO = 0
  348:       NOFACT = LSAME( FACT, 'N' )
  349:       EQUIL = LSAME( FACT, 'E' )
  350:       IF( NOFACT .OR. EQUIL ) THEN
  351:          EQUED = 'N'
  352:          RCEQU = .FALSE.
  353:       ELSE
  354:          RCEQU = LSAME( EQUED, 'Y' )
  355:          SMLNUM = DLAMCH( 'Safe minimum' )
  356:          BIGNUM = ONE / SMLNUM
  357:       END IF
  358: *
  359: *     Test the input parameters.
  360: *
  361:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  362:      $     THEN
  363:          INFO = -1
  364:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  365:      $          THEN
  366:          INFO = -2
  367:       ELSE IF( N.LT.0 ) THEN
  368:          INFO = -3
  369:       ELSE IF( NRHS.LT.0 ) THEN
  370:          INFO = -4
  371:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  372:          INFO = -6
  373:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  374:          INFO = -8
  375:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  376:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  377:          INFO = -9
  378:       ELSE
  379:          IF( RCEQU ) THEN
  380:             SMIN = BIGNUM
  381:             SMAX = ZERO
  382:             DO 10 J = 1, N
  383:                SMIN = MIN( SMIN, S( J ) )
  384:                SMAX = MAX( SMAX, S( J ) )
  385:    10       CONTINUE
  386:             IF( SMIN.LE.ZERO ) THEN
  387:                INFO = -10
  388:             ELSE IF( N.GT.0 ) THEN
  389:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  390:             ELSE
  391:                SCOND = ONE
  392:             END IF
  393:          END IF
  394:          IF( INFO.EQ.0 ) THEN
  395:             IF( LDB.LT.MAX( 1, N ) ) THEN
  396:                INFO = -12
  397:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  398:                INFO = -14
  399:             END IF
  400:          END IF
  401:       END IF
  402: *
  403:       IF( INFO.NE.0 ) THEN
  404:          CALL XERBLA( 'ZPOSVX', -INFO )
  405:          RETURN
  406:       END IF
  407: *
  408:       IF( EQUIL ) THEN
  409: *
  410: *        Compute row and column scalings to equilibrate the matrix A.
  411: *
  412:          CALL ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  413:          IF( INFEQU.EQ.0 ) THEN
  414: *
  415: *           Equilibrate the matrix.
  416: *
  417:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  418:             RCEQU = LSAME( EQUED, 'Y' )
  419:          END IF
  420:       END IF
  421: *
  422: *     Scale the right hand side.
  423: *
  424:       IF( RCEQU ) THEN
  425:          DO 30 J = 1, NRHS
  426:             DO 20 I = 1, N
  427:                B( I, J ) = S( I )*B( I, J )
  428:    20       CONTINUE
  429:    30    CONTINUE
  430:       END IF
  431: *
  432:       IF( NOFACT .OR. EQUIL ) THEN
  433: *
  434: *        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
  435: *
  436:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  437:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
  438: *
  439: *        Return if INFO is non-zero.
  440: *
  441:          IF( INFO.GT.0 )THEN
  442:             RCOND = ZERO
  443:             RETURN
  444:          END IF
  445:       END IF
  446: *
  447: *     Compute the norm of the matrix A.
  448: *
  449:       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  450: *
  451: *     Compute the reciprocal of the condition number of A.
  452: *
  453:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
  454: *
  455: *     Compute the solution matrix X.
  456: *
  457:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  458:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  459: *
  460: *     Use iterative refinement to improve the computed solution and
  461: *     compute error bounds and backward error estimates for it.
  462: *
  463:       CALL ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  464:      $             FERR, BERR, WORK, RWORK, INFO )
  465: *
  466: *     Transform the solution matrix X to a solution of the original
  467: *     system.
  468: *
  469:       IF( RCEQU ) THEN
  470:          DO 50 J = 1, NRHS
  471:             DO 40 I = 1, N
  472:                X( I, J ) = S( I )*X( I, J )
  473:    40       CONTINUE
  474:    50    CONTINUE
  475:          DO 60 J = 1, NRHS
  476:             FERR( J ) = FERR( J ) / SCOND
  477:    60    CONTINUE
  478:       END IF
  479: *
  480: *     Set INFO = N+1 if the matrix is singular to working precision.
  481: *
  482:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  483:      $   INFO = N + 1
  484: *
  485:       RETURN
  486: *
  487: *     End of ZPOSVX
  488: *
  489:       END

CVSweb interface <joel.bertrand@systella.fr>