Annotation of rpl/lapack/lapack/zposvx.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                      2:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
                      3:      $                   RWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EQUED, FACT, UPLO
                     12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     13:       DOUBLE PRECISION   RCOND
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                     17:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     18:      $                   WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
                     25: *  compute the solution to a complex system of linear equations
                     26: *     A * X = B,
                     27: *  where A is an N-by-N Hermitian positive definite matrix and X and B
                     28: *  are N-by-NRHS matrices.
                     29: *
                     30: *  Error bounds on the solution and a condition estimate are also
                     31: *  provided.
                     32: *
                     33: *  Description
                     34: *  ===========
                     35: *
                     36: *  The following steps are performed:
                     37: *
                     38: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
                     39: *     the system:
                     40: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     41: *     Whether or not the system will be equilibrated depends on the
                     42: *     scaling of the matrix A, but if equilibration is used, A is
                     43: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     44: *
                     45: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     46: *     factor the matrix A (after equilibration if FACT = 'E') as
                     47: *        A = U**H* U,  if UPLO = 'U', or
                     48: *        A = L * L**H,  if UPLO = 'L',
                     49: *     where U is an upper triangular matrix and L is a lower triangular
                     50: *     matrix.
                     51: *
                     52: *  3. If the leading i-by-i principal minor is not positive definite,
                     53: *     then the routine returns with INFO = i. Otherwise, the factored
                     54: *     form of A is used to estimate the condition number of the matrix
                     55: *     A.  If the reciprocal of the condition number is less than machine
                     56: *     precision, INFO = N+1 is returned as a warning, but the routine
                     57: *     still goes on to solve for X and compute error bounds as
                     58: *     described below.
                     59: *
                     60: *  4. The system of equations is solved for X using the factored form
                     61: *     of A.
                     62: *
                     63: *  5. Iterative refinement is applied to improve the computed solution
                     64: *     matrix and calculate error bounds and backward error estimates
                     65: *     for it.
                     66: *
                     67: *  6. If equilibration was used, the matrix X is premultiplied by
                     68: *     diag(S) so that it solves the original system before
                     69: *     equilibration.
                     70: *
                     71: *  Arguments
                     72: *  =========
                     73: *
                     74: *  FACT    (input) CHARACTER*1
                     75: *          Specifies whether or not the factored form of the matrix A is
                     76: *          supplied on entry, and if not, whether the matrix A should be
                     77: *          equilibrated before it is factored.
                     78: *          = 'F':  On entry, AF contains the factored form of A.
                     79: *                  If EQUED = 'Y', the matrix A has been equilibrated
                     80: *                  with scaling factors given by S.  A and AF will not
                     81: *                  be modified.
                     82: *          = 'N':  The matrix A will be copied to AF and factored.
                     83: *          = 'E':  The matrix A will be equilibrated if necessary, then
                     84: *                  copied to AF and factored.
                     85: *
                     86: *  UPLO    (input) CHARACTER*1
                     87: *          = 'U':  Upper triangle of A is stored;
                     88: *          = 'L':  Lower triangle of A is stored.
                     89: *
                     90: *  N       (input) INTEGER
                     91: *          The number of linear equations, i.e., the order of the
                     92: *          matrix A.  N >= 0.
                     93: *
                     94: *  NRHS    (input) INTEGER
                     95: *          The number of right hand sides, i.e., the number of columns
                     96: *          of the matrices B and X.  NRHS >= 0.
                     97: *
                     98: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     99: *          On entry, the Hermitian matrix A, except if FACT = 'F' and
                    100: *          EQUED = 'Y', then A must contain the equilibrated matrix
                    101: *          diag(S)*A*diag(S).  If UPLO = 'U', the leading
                    102: *          N-by-N upper triangular part of A contains the upper
                    103: *          triangular part of the matrix A, and the strictly lower
                    104: *          triangular part of A is not referenced.  If UPLO = 'L', the
                    105: *          leading N-by-N lower triangular part of A contains the lower
                    106: *          triangular part of the matrix A, and the strictly upper
                    107: *          triangular part of A is not referenced.  A is not modified if
                    108: *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    109: *
                    110: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    111: *          diag(S)*A*diag(S).
                    112: *
                    113: *  LDA     (input) INTEGER
                    114: *          The leading dimension of the array A.  LDA >= max(1,N).
                    115: *
                    116: *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
                    117: *          If FACT = 'F', then AF is an input argument and on entry
                    118: *          contains the triangular factor U or L from the Cholesky
                    119: *          factorization A = U**H*U or A = L*L**H, in the same storage
                    120: *          format as A.  If EQUED .ne. 'N', then AF is the factored form
                    121: *          of the equilibrated matrix diag(S)*A*diag(S).
                    122: *
                    123: *          If FACT = 'N', then AF is an output argument and on exit
                    124: *          returns the triangular factor U or L from the Cholesky
                    125: *          factorization A = U**H*U or A = L*L**H of the original
                    126: *          matrix A.
                    127: *
                    128: *          If FACT = 'E', then AF is an output argument and on exit
                    129: *          returns the triangular factor U or L from the Cholesky
                    130: *          factorization A = U**H*U or A = L*L**H of the equilibrated
                    131: *          matrix A (see the description of A for the form of the
                    132: *          equilibrated matrix).
                    133: *
                    134: *  LDAF    (input) INTEGER
                    135: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                    136: *
                    137: *  EQUED   (input or output) CHARACTER*1
                    138: *          Specifies the form of equilibration that was done.
                    139: *          = 'N':  No equilibration (always true if FACT = 'N').
                    140: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    141: *                  diag(S) * A * diag(S).
                    142: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    143: *          output argument.
                    144: *
                    145: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
                    146: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    147: *          an input argument if FACT = 'F'; otherwise, S is an output
                    148: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    149: *          must be positive.
                    150: *
                    151: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                    152: *          On entry, the N-by-NRHS righthand side matrix B.
                    153: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    154: *          B is overwritten by diag(S) * B.
                    155: *
                    156: *  LDB     (input) INTEGER
                    157: *          The leading dimension of the array B.  LDB >= max(1,N).
                    158: *
                    159: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    160: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    161: *          the original system of equations.  Note that if EQUED = 'Y',
                    162: *          A and B are modified on exit, and the solution to the
                    163: *          equilibrated system is inv(diag(S))*X.
                    164: *
                    165: *  LDX     (input) INTEGER
                    166: *          The leading dimension of the array X.  LDX >= max(1,N).
                    167: *
                    168: *  RCOND   (output) DOUBLE PRECISION
                    169: *          The estimate of the reciprocal condition number of the matrix
                    170: *          A after equilibration (if done).  If RCOND is less than the
                    171: *          machine precision (in particular, if RCOND = 0), the matrix
                    172: *          is singular to working precision.  This condition is
                    173: *          indicated by a return code of INFO > 0.
                    174: *
                    175: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    176: *          The estimated forward error bound for each solution vector
                    177: *          X(j) (the j-th column of the solution matrix X).
                    178: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    179: *          is an estimated upper bound for the magnitude of the largest
                    180: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    181: *          largest element in X(j).  The estimate is as reliable as
                    182: *          the estimate for RCOND, and is almost always a slight
                    183: *          overestimate of the true error.
                    184: *
                    185: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    186: *          The componentwise relative backward error of each solution
                    187: *          vector X(j) (i.e., the smallest relative change in
                    188: *          any element of A or B that makes X(j) an exact solution).
                    189: *
                    190: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    191: *
                    192: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    193: *
                    194: *  INFO    (output) INTEGER
                    195: *          = 0: successful exit
                    196: *          < 0: if INFO = -i, the i-th argument had an illegal value
                    197: *          > 0: if INFO = i, and i is
                    198: *                <= N:  the leading minor of order i of A is
                    199: *                       not positive definite, so the factorization
                    200: *                       could not be completed, and the solution has not
                    201: *                       been computed. RCOND = 0 is returned.
                    202: *                = N+1: U is nonsingular, but RCOND is less than machine
                    203: *                       precision, meaning that the matrix is singular
                    204: *                       to working precision.  Nevertheless, the
                    205: *                       solution and error bounds are computed because
                    206: *                       there are a number of situations where the
                    207: *                       computed solution can be more accurate than the
                    208: *                       value of RCOND would suggest.
                    209: *
                    210: *  =====================================================================
                    211: *
                    212: *     .. Parameters ..
                    213:       DOUBLE PRECISION   ZERO, ONE
                    214:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    215: *     ..
                    216: *     .. Local Scalars ..
                    217:       LOGICAL            EQUIL, NOFACT, RCEQU
                    218:       INTEGER            I, INFEQU, J
                    219:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    220: *     ..
                    221: *     .. External Functions ..
                    222:       LOGICAL            LSAME
                    223:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    224:       EXTERNAL           LSAME, DLAMCH, ZLANHE
                    225: *     ..
                    226: *     .. External Subroutines ..
                    227:       EXTERNAL           XERBLA, ZLACPY, ZLAQHE, ZPOCON, ZPOEQU, ZPORFS,
                    228:      $                   ZPOTRF, ZPOTRS
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          MAX, MIN
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235:       INFO = 0
                    236:       NOFACT = LSAME( FACT, 'N' )
                    237:       EQUIL = LSAME( FACT, 'E' )
                    238:       IF( NOFACT .OR. EQUIL ) THEN
                    239:          EQUED = 'N'
                    240:          RCEQU = .FALSE.
                    241:       ELSE
                    242:          RCEQU = LSAME( EQUED, 'Y' )
                    243:          SMLNUM = DLAMCH( 'Safe minimum' )
                    244:          BIGNUM = ONE / SMLNUM
                    245:       END IF
                    246: *
                    247: *     Test the input parameters.
                    248: *
                    249:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    250:      $     THEN
                    251:          INFO = -1
                    252:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    253:      $          THEN
                    254:          INFO = -2
                    255:       ELSE IF( N.LT.0 ) THEN
                    256:          INFO = -3
                    257:       ELSE IF( NRHS.LT.0 ) THEN
                    258:          INFO = -4
                    259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -6
                    261:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    262:          INFO = -8
                    263:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    264:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    265:          INFO = -9
                    266:       ELSE
                    267:          IF( RCEQU ) THEN
                    268:             SMIN = BIGNUM
                    269:             SMAX = ZERO
                    270:             DO 10 J = 1, N
                    271:                SMIN = MIN( SMIN, S( J ) )
                    272:                SMAX = MAX( SMAX, S( J ) )
                    273:    10       CONTINUE
                    274:             IF( SMIN.LE.ZERO ) THEN
                    275:                INFO = -10
                    276:             ELSE IF( N.GT.0 ) THEN
                    277:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    278:             ELSE
                    279:                SCOND = ONE
                    280:             END IF
                    281:          END IF
                    282:          IF( INFO.EQ.0 ) THEN
                    283:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    284:                INFO = -12
                    285:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    286:                INFO = -14
                    287:             END IF
                    288:          END IF
                    289:       END IF
                    290: *
                    291:       IF( INFO.NE.0 ) THEN
                    292:          CALL XERBLA( 'ZPOSVX', -INFO )
                    293:          RETURN
                    294:       END IF
                    295: *
                    296:       IF( EQUIL ) THEN
                    297: *
                    298: *        Compute row and column scalings to equilibrate the matrix A.
                    299: *
                    300:          CALL ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
                    301:          IF( INFEQU.EQ.0 ) THEN
                    302: *
                    303: *           Equilibrate the matrix.
                    304: *
                    305:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    306:             RCEQU = LSAME( EQUED, 'Y' )
                    307:          END IF
                    308:       END IF
                    309: *
                    310: *     Scale the right hand side.
                    311: *
                    312:       IF( RCEQU ) THEN
                    313:          DO 30 J = 1, NRHS
                    314:             DO 20 I = 1, N
                    315:                B( I, J ) = S( I )*B( I, J )
                    316:    20       CONTINUE
                    317:    30    CONTINUE
                    318:       END IF
                    319: *
                    320:       IF( NOFACT .OR. EQUIL ) THEN
                    321: *
                    322: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
                    323: *
                    324:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    325:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
                    326: *
                    327: *        Return if INFO is non-zero.
                    328: *
                    329:          IF( INFO.GT.0 )THEN
                    330:             RCOND = ZERO
                    331:             RETURN
                    332:          END IF
                    333:       END IF
                    334: *
                    335: *     Compute the norm of the matrix A.
                    336: *
                    337:       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
                    338: *
                    339: *     Compute the reciprocal of the condition number of A.
                    340: *
                    341:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    342: *
                    343: *     Compute the solution matrix X.
                    344: *
                    345:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    346:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
                    347: *
                    348: *     Use iterative refinement to improve the computed solution and
                    349: *     compute error bounds and backward error estimates for it.
                    350: *
                    351:       CALL ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
                    352:      $             FERR, BERR, WORK, RWORK, INFO )
                    353: *
                    354: *     Transform the solution matrix X to a solution of the original
                    355: *     system.
                    356: *
                    357:       IF( RCEQU ) THEN
                    358:          DO 50 J = 1, NRHS
                    359:             DO 40 I = 1, N
                    360:                X( I, J ) = S( I )*X( I, J )
                    361:    40       CONTINUE
                    362:    50    CONTINUE
                    363:          DO 60 J = 1, NRHS
                    364:             FERR( J ) = FERR( J ) / SCOND
                    365:    60    CONTINUE
                    366:       END IF
                    367: *
                    368: *     Set INFO = N+1 if the matrix is singular to working precision.
                    369: *
                    370:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    371:      $   INFO = N + 1
                    372: *
                    373:       RETURN
                    374: *
                    375: *     End of ZPOSVX
                    376: *
                    377:       END

CVSweb interface <joel.bertrand@systella.fr>