Annotation of rpl/lapack/lapack/zposvx.f, revision 1.17

1.9       bertrand    1: *> \brief <b> ZPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZPOSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                     22: *                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
                     23: *                          RWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EQUED, FACT, UPLO
                     27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                     32: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     33: *      $                   WORK( * ), X( LDX, * )
                     34: *       ..
1.16      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
                     43: *> compute the solution to a complex system of linear equations
                     44: *>    A * X = B,
                     45: *> where A is an N-by-N Hermitian positive definite matrix and X and B
                     46: *> are N-by-NRHS matrices.
                     47: *>
                     48: *> Error bounds on the solution and a condition estimate are also
                     49: *> provided.
                     50: *> \endverbatim
                     51: *
                     52: *> \par Description:
                     53: *  =================
                     54: *>
                     55: *> \verbatim
                     56: *>
                     57: *> The following steps are performed:
                     58: *>
                     59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     60: *>    the system:
                     61: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     62: *>    Whether or not the system will be equilibrated depends on the
                     63: *>    scaling of the matrix A, but if equilibration is used, A is
                     64: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     65: *>
                     66: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     67: *>    factor the matrix A (after equilibration if FACT = 'E') as
                     68: *>       A = U**H* U,  if UPLO = 'U', or
                     69: *>       A = L * L**H,  if UPLO = 'L',
                     70: *>    where U is an upper triangular matrix and L is a lower triangular
                     71: *>    matrix.
                     72: *>
                     73: *> 3. If the leading i-by-i principal minor is not positive definite,
                     74: *>    then the routine returns with INFO = i. Otherwise, the factored
                     75: *>    form of A is used to estimate the condition number of the matrix
                     76: *>    A.  If the reciprocal of the condition number is less than machine
                     77: *>    precision, INFO = N+1 is returned as a warning, but the routine
                     78: *>    still goes on to solve for X and compute error bounds as
                     79: *>    described below.
                     80: *>
                     81: *> 4. The system of equations is solved for X using the factored form
                     82: *>    of A.
                     83: *>
                     84: *> 5. Iterative refinement is applied to improve the computed solution
                     85: *>    matrix and calculate error bounds and backward error estimates
                     86: *>    for it.
                     87: *>
                     88: *> 6. If equilibration was used, the matrix X is premultiplied by
                     89: *>    diag(S) so that it solves the original system before
                     90: *>    equilibration.
                     91: *> \endverbatim
                     92: *
                     93: *  Arguments:
                     94: *  ==========
                     95: *
                     96: *> \param[in] FACT
                     97: *> \verbatim
                     98: *>          FACT is CHARACTER*1
                     99: *>          Specifies whether or not the factored form of the matrix A is
                    100: *>          supplied on entry, and if not, whether the matrix A should be
                    101: *>          equilibrated before it is factored.
                    102: *>          = 'F':  On entry, AF contains the factored form of A.
                    103: *>                  If EQUED = 'Y', the matrix A has been equilibrated
                    104: *>                  with scaling factors given by S.  A and AF will not
                    105: *>                  be modified.
                    106: *>          = 'N':  The matrix A will be copied to AF and factored.
                    107: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    108: *>                  copied to AF and factored.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] UPLO
                    112: *> \verbatim
                    113: *>          UPLO is CHARACTER*1
                    114: *>          = 'U':  Upper triangle of A is stored;
                    115: *>          = 'L':  Lower triangle of A is stored.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] N
                    119: *> \verbatim
                    120: *>          N is INTEGER
                    121: *>          The number of linear equations, i.e., the order of the
                    122: *>          matrix A.  N >= 0.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] NRHS
                    126: *> \verbatim
                    127: *>          NRHS is INTEGER
                    128: *>          The number of right hand sides, i.e., the number of columns
                    129: *>          of the matrices B and X.  NRHS >= 0.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in,out] A
                    133: *> \verbatim
                    134: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    135: *>          On entry, the Hermitian matrix A, except if FACT = 'F' and
                    136: *>          EQUED = 'Y', then A must contain the equilibrated matrix
                    137: *>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
                    138: *>          N-by-N upper triangular part of A contains the upper
                    139: *>          triangular part of the matrix A, and the strictly lower
                    140: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                    141: *>          leading N-by-N lower triangular part of A contains the lower
                    142: *>          triangular part of the matrix A, and the strictly upper
                    143: *>          triangular part of A is not referenced.  A is not modified if
                    144: *>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    145: *>
                    146: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    147: *>          diag(S)*A*diag(S).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LDA
                    151: *> \verbatim
                    152: *>          LDA is INTEGER
                    153: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in,out] AF
                    157: *> \verbatim
1.11      bertrand  158: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
1.9       bertrand  159: *>          If FACT = 'F', then AF is an input argument and on entry
                    160: *>          contains the triangular factor U or L from the Cholesky
                    161: *>          factorization A = U**H *U or A = L*L**H, in the same storage
                    162: *>          format as A.  If EQUED .ne. 'N', then AF is the factored form
                    163: *>          of the equilibrated matrix diag(S)*A*diag(S).
                    164: *>
                    165: *>          If FACT = 'N', then AF is an output argument and on exit
                    166: *>          returns the triangular factor U or L from the Cholesky
                    167: *>          factorization A = U**H *U or A = L*L**H of the original
                    168: *>          matrix A.
                    169: *>
                    170: *>          If FACT = 'E', then AF is an output argument and on exit
                    171: *>          returns the triangular factor U or L from the Cholesky
                    172: *>          factorization A = U**H *U or A = L*L**H of the equilibrated
                    173: *>          matrix A (see the description of A for the form of the
                    174: *>          equilibrated matrix).
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in] LDAF
                    178: *> \verbatim
                    179: *>          LDAF is INTEGER
                    180: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[in,out] EQUED
                    184: *> \verbatim
1.11      bertrand  185: *>          EQUED is CHARACTER*1
1.9       bertrand  186: *>          Specifies the form of equilibration that was done.
                    187: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    188: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    189: *>                  diag(S) * A * diag(S).
                    190: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    191: *>          output argument.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[in,out] S
                    195: *> \verbatim
1.11      bertrand  196: *>          S is DOUBLE PRECISION array, dimension (N)
1.9       bertrand  197: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    198: *>          an input argument if FACT = 'F'; otherwise, S is an output
                    199: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    200: *>          must be positive.
                    201: *> \endverbatim
                    202: *>
                    203: *> \param[in,out] B
                    204: *> \verbatim
                    205: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    206: *>          On entry, the N-by-NRHS righthand side matrix B.
                    207: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    208: *>          B is overwritten by diag(S) * B.
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in] LDB
                    212: *> \verbatim
                    213: *>          LDB is INTEGER
                    214: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[out] X
                    218: *> \verbatim
                    219: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    220: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    221: *>          the original system of equations.  Note that if EQUED = 'Y',
                    222: *>          A and B are modified on exit, and the solution to the
                    223: *>          equilibrated system is inv(diag(S))*X.
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[in] LDX
                    227: *> \verbatim
                    228: *>          LDX is INTEGER
                    229: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[out] RCOND
                    233: *> \verbatim
                    234: *>          RCOND is DOUBLE PRECISION
                    235: *>          The estimate of the reciprocal condition number of the matrix
                    236: *>          A after equilibration (if done).  If RCOND is less than the
                    237: *>          machine precision (in particular, if RCOND = 0), the matrix
                    238: *>          is singular to working precision.  This condition is
                    239: *>          indicated by a return code of INFO > 0.
                    240: *> \endverbatim
                    241: *>
                    242: *> \param[out] FERR
                    243: *> \verbatim
                    244: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    245: *>          The estimated forward error bound for each solution vector
                    246: *>          X(j) (the j-th column of the solution matrix X).
                    247: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    248: *>          is an estimated upper bound for the magnitude of the largest
                    249: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    250: *>          largest element in X(j).  The estimate is as reliable as
                    251: *>          the estimate for RCOND, and is almost always a slight
                    252: *>          overestimate of the true error.
                    253: *> \endverbatim
                    254: *>
                    255: *> \param[out] BERR
                    256: *> \verbatim
                    257: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    258: *>          The componentwise relative backward error of each solution
                    259: *>          vector X(j) (i.e., the smallest relative change in
                    260: *>          any element of A or B that makes X(j) an exact solution).
                    261: *> \endverbatim
                    262: *>
                    263: *> \param[out] WORK
                    264: *> \verbatim
                    265: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    266: *> \endverbatim
                    267: *>
                    268: *> \param[out] RWORK
                    269: *> \verbatim
                    270: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    271: *> \endverbatim
                    272: *>
                    273: *> \param[out] INFO
                    274: *> \verbatim
                    275: *>          INFO is INTEGER
                    276: *>          = 0: successful exit
                    277: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    278: *>          > 0: if INFO = i, and i is
                    279: *>                <= N:  the leading minor of order i of A is
                    280: *>                       not positive definite, so the factorization
                    281: *>                       could not be completed, and the solution has not
                    282: *>                       been computed. RCOND = 0 is returned.
                    283: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    284: *>                       precision, meaning that the matrix is singular
                    285: *>                       to working precision.  Nevertheless, the
                    286: *>                       solution and error bounds are computed because
                    287: *>                       there are a number of situations where the
                    288: *>                       computed solution can be more accurate than the
                    289: *>                       value of RCOND would suggest.
                    290: *> \endverbatim
                    291: *
                    292: *  Authors:
                    293: *  ========
                    294: *
1.16      bertrand  295: *> \author Univ. of Tennessee
                    296: *> \author Univ. of California Berkeley
                    297: *> \author Univ. of Colorado Denver
                    298: *> \author NAG Ltd.
1.9       bertrand  299: *
1.11      bertrand  300: *> \date April 2012
1.9       bertrand  301: *
                    302: *> \ingroup complex16POsolve
                    303: *
                    304: *  =====================================================================
1.1       bertrand  305:       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
                    306:      $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
                    307:      $                   RWORK, INFO )
                    308: *
1.16      bertrand  309: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  310: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    311: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11      bertrand  312: *     April 2012
1.1       bertrand  313: *
                    314: *     .. Scalar Arguments ..
                    315:       CHARACTER          EQUED, FACT, UPLO
                    316:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    317:       DOUBLE PRECISION   RCOND
                    318: *     ..
                    319: *     .. Array Arguments ..
                    320:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                    321:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    322:      $                   WORK( * ), X( LDX, * )
                    323: *     ..
                    324: *
                    325: *  =====================================================================
                    326: *
                    327: *     .. Parameters ..
                    328:       DOUBLE PRECISION   ZERO, ONE
                    329:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    330: *     ..
                    331: *     .. Local Scalars ..
                    332:       LOGICAL            EQUIL, NOFACT, RCEQU
                    333:       INTEGER            I, INFEQU, J
                    334:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    335: *     ..
                    336: *     .. External Functions ..
                    337:       LOGICAL            LSAME
                    338:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    339:       EXTERNAL           LSAME, DLAMCH, ZLANHE
                    340: *     ..
                    341: *     .. External Subroutines ..
                    342:       EXTERNAL           XERBLA, ZLACPY, ZLAQHE, ZPOCON, ZPOEQU, ZPORFS,
                    343:      $                   ZPOTRF, ZPOTRS
                    344: *     ..
                    345: *     .. Intrinsic Functions ..
                    346:       INTRINSIC          MAX, MIN
                    347: *     ..
                    348: *     .. Executable Statements ..
                    349: *
                    350:       INFO = 0
                    351:       NOFACT = LSAME( FACT, 'N' )
                    352:       EQUIL = LSAME( FACT, 'E' )
                    353:       IF( NOFACT .OR. EQUIL ) THEN
                    354:          EQUED = 'N'
                    355:          RCEQU = .FALSE.
                    356:       ELSE
                    357:          RCEQU = LSAME( EQUED, 'Y' )
                    358:          SMLNUM = DLAMCH( 'Safe minimum' )
                    359:          BIGNUM = ONE / SMLNUM
                    360:       END IF
                    361: *
                    362: *     Test the input parameters.
                    363: *
                    364:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    365:      $     THEN
                    366:          INFO = -1
                    367:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    368:      $          THEN
                    369:          INFO = -2
                    370:       ELSE IF( N.LT.0 ) THEN
                    371:          INFO = -3
                    372:       ELSE IF( NRHS.LT.0 ) THEN
                    373:          INFO = -4
                    374:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    375:          INFO = -6
                    376:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    377:          INFO = -8
                    378:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    379:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    380:          INFO = -9
                    381:       ELSE
                    382:          IF( RCEQU ) THEN
                    383:             SMIN = BIGNUM
                    384:             SMAX = ZERO
                    385:             DO 10 J = 1, N
                    386:                SMIN = MIN( SMIN, S( J ) )
                    387:                SMAX = MAX( SMAX, S( J ) )
                    388:    10       CONTINUE
                    389:             IF( SMIN.LE.ZERO ) THEN
                    390:                INFO = -10
                    391:             ELSE IF( N.GT.0 ) THEN
                    392:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    393:             ELSE
                    394:                SCOND = ONE
                    395:             END IF
                    396:          END IF
                    397:          IF( INFO.EQ.0 ) THEN
                    398:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    399:                INFO = -12
                    400:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    401:                INFO = -14
                    402:             END IF
                    403:          END IF
                    404:       END IF
                    405: *
                    406:       IF( INFO.NE.0 ) THEN
                    407:          CALL XERBLA( 'ZPOSVX', -INFO )
                    408:          RETURN
                    409:       END IF
                    410: *
                    411:       IF( EQUIL ) THEN
                    412: *
                    413: *        Compute row and column scalings to equilibrate the matrix A.
                    414: *
                    415:          CALL ZPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
                    416:          IF( INFEQU.EQ.0 ) THEN
                    417: *
                    418: *           Equilibrate the matrix.
                    419: *
                    420:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    421:             RCEQU = LSAME( EQUED, 'Y' )
                    422:          END IF
                    423:       END IF
                    424: *
                    425: *     Scale the right hand side.
                    426: *
                    427:       IF( RCEQU ) THEN
                    428:          DO 30 J = 1, NRHS
                    429:             DO 20 I = 1, N
                    430:                B( I, J ) = S( I )*B( I, J )
                    431:    20       CONTINUE
                    432:    30    CONTINUE
                    433:       END IF
                    434: *
                    435:       IF( NOFACT .OR. EQUIL ) THEN
                    436: *
1.8       bertrand  437: *        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
1.1       bertrand  438: *
                    439:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    440:          CALL ZPOTRF( UPLO, N, AF, LDAF, INFO )
                    441: *
                    442: *        Return if INFO is non-zero.
                    443: *
                    444:          IF( INFO.GT.0 )THEN
                    445:             RCOND = ZERO
                    446:             RETURN
                    447:          END IF
                    448:       END IF
                    449: *
                    450: *     Compute the norm of the matrix A.
                    451: *
                    452:       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
                    453: *
                    454: *     Compute the reciprocal of the condition number of A.
                    455: *
                    456:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
                    457: *
                    458: *     Compute the solution matrix X.
                    459: *
                    460:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    461:       CALL ZPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
                    462: *
                    463: *     Use iterative refinement to improve the computed solution and
                    464: *     compute error bounds and backward error estimates for it.
                    465: *
                    466:       CALL ZPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
                    467:      $             FERR, BERR, WORK, RWORK, INFO )
                    468: *
                    469: *     Transform the solution matrix X to a solution of the original
                    470: *     system.
                    471: *
                    472:       IF( RCEQU ) THEN
                    473:          DO 50 J = 1, NRHS
                    474:             DO 40 I = 1, N
                    475:                X( I, J ) = S( I )*X( I, J )
                    476:    40       CONTINUE
                    477:    50    CONTINUE
                    478:          DO 60 J = 1, NRHS
                    479:             FERR( J ) = FERR( J ) / SCOND
                    480:    60    CONTINUE
                    481:       END IF
                    482: *
                    483: *     Set INFO = N+1 if the matrix is singular to working precision.
                    484: *
                    485:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    486:      $   INFO = N + 1
                    487: *
                    488:       RETURN
                    489: *
                    490: *     End of ZPOSVX
                    491: *
                    492:       END

CVSweb interface <joel.bertrand@systella.fr>