File:  [local] / rpl / lapack / lapack / zporfsx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:34 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPORFSX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPORFSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zporfsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zporfsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zporfsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
   22: *                           LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
   23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   24: *                           WORK, RWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          UPLO, EQUED
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   34: *      $                   X( LDX, * ), WORK( * )
   35: *       DOUBLE PRECISION   RWORK( * ), S( * ), PARAMS(*), BERR( * ),
   36: *      $                   ERR_BNDS_NORM( NRHS, * ),
   37: *      $                   ERR_BNDS_COMP( NRHS, * )
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *>    ZPORFSX improves the computed solution to a system of linear
   47: *>    equations when the coefficient matrix is Hermitian positive
   48: *>    definite, and provides error bounds and backward error estimates
   49: *>    for the solution.  In addition to normwise error bound, the code
   50: *>    provides maximum componentwise error bound if possible.  See
   51: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
   52: *>    error bounds.
   53: *>
   54: *>    The original system of linear equations may have been equilibrated
   55: *>    before calling this routine, as described by arguments EQUED and S
   56: *>    below. In this case, the solution and error bounds returned are
   57: *>    for the original unequilibrated system.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \verbatim
   64: *>     Some optional parameters are bundled in the PARAMS array.  These
   65: *>     settings determine how refinement is performed, but often the
   66: *>     defaults are acceptable.  If the defaults are acceptable, users
   67: *>     can pass NPARAMS = 0 which prevents the source code from accessing
   68: *>     the PARAMS argument.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>       = 'U':  Upper triangle of A is stored;
   75: *>       = 'L':  Lower triangle of A is stored.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] EQUED
   79: *> \verbatim
   80: *>          EQUED is CHARACTER*1
   81: *>     Specifies the form of equilibration that was done to A
   82: *>     before calling this routine. This is needed to compute
   83: *>     the solution and error bounds correctly.
   84: *>       = 'N':  No equilibration
   85: *>       = 'Y':  Both row and column equilibration, i.e., A has been
   86: *>               replaced by diag(S) * A * diag(S).
   87: *>               The right hand side B has been changed accordingly.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>     The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] NRHS
   97: *> \verbatim
   98: *>          NRHS is INTEGER
   99: *>     The number of right hand sides, i.e., the number of columns
  100: *>     of the matrices B and X.  NRHS >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] A
  104: *> \verbatim
  105: *>          A is COMPLEX*16 array, dimension (LDA,N)
  106: *>     The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
  107: *>     upper triangular part of A contains the upper triangular part
  108: *>     of the matrix A, and the strictly lower triangular part of A
  109: *>     is not referenced.  If UPLO = 'L', the leading N-by-N lower
  110: *>     triangular part of A contains the lower triangular part of
  111: *>     the matrix A, and the strictly upper triangular part of A is
  112: *>     not referenced.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>     The leading dimension of the array A.  LDA >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] AF
  122: *> \verbatim
  123: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  124: *>     The triangular factor U or L from the Cholesky factorization
  125: *>     A = U**H*U or A = L*L**H, as computed by ZPOTRF.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDAF
  129: *> \verbatim
  130: *>          LDAF is INTEGER
  131: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] S
  135: *> \verbatim
  136: *>          S is DOUBLE PRECISION array, dimension (N)
  137: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  138: *>     the left and right by diag(S).  S is an input argument if FACT =
  139: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  140: *>     = 'Y', each element of S must be positive.  If S is output, each
  141: *>     element of S is a power of the radix. If S is input, each element
  142: *>     of S should be a power of the radix to ensure a reliable solution
  143: *>     and error estimates. Scaling by powers of the radix does not cause
  144: *>     rounding errors unless the result underflows or overflows.
  145: *>     Rounding errors during scaling lead to refining with a matrix that
  146: *>     is not equivalent to the input matrix, producing error estimates
  147: *>     that may not be reliable.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] B
  151: *> \verbatim
  152: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  153: *>     The right hand side matrix B.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDB
  157: *> \verbatim
  158: *>          LDB is INTEGER
  159: *>     The leading dimension of the array B.  LDB >= max(1,N).
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] X
  163: *> \verbatim
  164: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  165: *>     On entry, the solution matrix X, as computed by ZGETRS.
  166: *>     On exit, the improved solution matrix X.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] LDX
  170: *> \verbatim
  171: *>          LDX is INTEGER
  172: *>     The leading dimension of the array X.  LDX >= max(1,N).
  173: *> \endverbatim
  174: *>
  175: *> \param[out] RCOND
  176: *> \verbatim
  177: *>          RCOND is DOUBLE PRECISION
  178: *>     Reciprocal scaled condition number.  This is an estimate of the
  179: *>     reciprocal Skeel condition number of the matrix A after
  180: *>     equilibration (if done).  If this is less than the machine
  181: *>     precision (in particular, if it is zero), the matrix is singular
  182: *>     to working precision.  Note that the error may still be small even
  183: *>     if this number is very small and the matrix appears ill-
  184: *>     conditioned.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] BERR
  188: *> \verbatim
  189: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  190: *>     Componentwise relative backward error.  This is the
  191: *>     componentwise relative backward error of each solution vector X(j)
  192: *>     (i.e., the smallest relative change in any element of A or B that
  193: *>     makes X(j) an exact solution).
  194: *> \endverbatim
  195: *>
  196: *> \param[in] N_ERR_BNDS
  197: *> \verbatim
  198: *>          N_ERR_BNDS is INTEGER
  199: *>     Number of error bounds to return for each right hand side
  200: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  201: *>     ERR_BNDS_COMP below.
  202: *> \endverbatim
  203: *>
  204: *> \param[out] ERR_BNDS_NORM
  205: *> \verbatim
  206: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  207: *>     For each right-hand side, this array contains information about
  208: *>     various error bounds and condition numbers corresponding to the
  209: *>     normwise relative error, which is defined as follows:
  210: *>
  211: *>     Normwise relative error in the ith solution vector:
  212: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  213: *>            ------------------------------
  214: *>                  max_j abs(X(j,i))
  215: *>
  216: *>     The array is indexed by the type of error information as described
  217: *>     below. There currently are up to three pieces of information
  218: *>     returned.
  219: *>
  220: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  221: *>     right-hand side.
  222: *>
  223: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  224: *>     three fields:
  225: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  226: *>              reciprocal condition number is less than the threshold
  227: *>              sqrt(n) * dlamch('Epsilon').
  228: *>
  229: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  230: *>              almost certainly within a factor of 10 of the true error
  231: *>              so long as the next entry is greater than the threshold
  232: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  233: *>              be trusted if the previous boolean is true.
  234: *>
  235: *>     err = 3  Reciprocal condition number: Estimated normwise
  236: *>              reciprocal condition number.  Compared with the threshold
  237: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  238: *>              estimate is "guaranteed". These reciprocal condition
  239: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  240: *>              appropriately scaled matrix Z.
  241: *>              Let Z = S*A, where S scales each row by a power of the
  242: *>              radix so all absolute row sums of Z are approximately 1.
  243: *>
  244: *>     See Lapack Working Note 165 for further details and extra
  245: *>     cautions.
  246: *> \endverbatim
  247: *>
  248: *> \param[out] ERR_BNDS_COMP
  249: *> \verbatim
  250: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  251: *>     For each right-hand side, this array contains information about
  252: *>     various error bounds and condition numbers corresponding to the
  253: *>     componentwise relative error, which is defined as follows:
  254: *>
  255: *>     Componentwise relative error in the ith solution vector:
  256: *>                    abs(XTRUE(j,i) - X(j,i))
  257: *>             max_j ----------------------
  258: *>                         abs(X(j,i))
  259: *>
  260: *>     The array is indexed by the right-hand side i (on which the
  261: *>     componentwise relative error depends), and the type of error
  262: *>     information as described below. There currently are up to three
  263: *>     pieces of information returned for each right-hand side. If
  264: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  265: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  266: *>     the first (:,N_ERR_BNDS) entries are returned.
  267: *>
  268: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  269: *>     right-hand side.
  270: *>
  271: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  272: *>     three fields:
  273: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  274: *>              reciprocal condition number is less than the threshold
  275: *>              sqrt(n) * dlamch('Epsilon').
  276: *>
  277: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  278: *>              almost certainly within a factor of 10 of the true error
  279: *>              so long as the next entry is greater than the threshold
  280: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  281: *>              be trusted if the previous boolean is true.
  282: *>
  283: *>     err = 3  Reciprocal condition number: Estimated componentwise
  284: *>              reciprocal condition number.  Compared with the threshold
  285: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  286: *>              estimate is "guaranteed". These reciprocal condition
  287: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  288: *>              appropriately scaled matrix Z.
  289: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  290: *>              current right-hand side and S scales each row of
  291: *>              A*diag(x) by a power of the radix so all absolute row
  292: *>              sums of Z are approximately 1.
  293: *>
  294: *>     See Lapack Working Note 165 for further details and extra
  295: *>     cautions.
  296: *> \endverbatim
  297: *>
  298: *> \param[in] NPARAMS
  299: *> \verbatim
  300: *>          NPARAMS is INTEGER
  301: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  302: *>     PARAMS array is never referenced and default values are used.
  303: *> \endverbatim
  304: *>
  305: *> \param[in,out] PARAMS
  306: *> \verbatim
  307: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  308: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  309: *>     that entry will be filled with default value used for that
  310: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  311: *>     are used for higher-numbered parameters.
  312: *>
  313: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  314: *>            refinement or not.
  315: *>         Default: 1.0D+0
  316: *>            = 0.0:  No refinement is performed, and no error bounds are
  317: *>                    computed.
  318: *>            = 1.0:  Use the double-precision refinement algorithm,
  319: *>                    possibly with doubled-single computations if the
  320: *>                    compilation environment does not support DOUBLE
  321: *>                    PRECISION.
  322: *>              (other values are reserved for future use)
  323: *>
  324: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  325: *>            computations allowed for refinement.
  326: *>         Default: 10
  327: *>         Aggressive: Set to 100 to permit convergence using approximate
  328: *>                     factorizations or factorizations other than LU. If
  329: *>                     the factorization uses a technique other than
  330: *>                     Gaussian elimination, the guarantees in
  331: *>                     err_bnds_norm and err_bnds_comp may no longer be
  332: *>                     trustworthy.
  333: *>
  334: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  335: *>            will attempt to find a solution with small componentwise
  336: *>            relative error in the double-precision algorithm.  Positive
  337: *>            is true, 0.0 is false.
  338: *>         Default: 1.0 (attempt componentwise convergence)
  339: *> \endverbatim
  340: *>
  341: *> \param[out] WORK
  342: *> \verbatim
  343: *>          WORK is COMPLEX*16 array, dimension (2*N)
  344: *> \endverbatim
  345: *>
  346: *> \param[out] RWORK
  347: *> \verbatim
  348: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  349: *> \endverbatim
  350: *>
  351: *> \param[out] INFO
  352: *> \verbatim
  353: *>          INFO is INTEGER
  354: *>       = 0:  Successful exit. The solution to every right-hand side is
  355: *>         guaranteed.
  356: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  357: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  358: *>         has been completed, but the factor U is exactly singular, so
  359: *>         the solution and error bounds could not be computed. RCOND = 0
  360: *>         is returned.
  361: *>       = N+J: The solution corresponding to the Jth right-hand side is
  362: *>         not guaranteed. The solutions corresponding to other right-
  363: *>         hand sides K with K > J may not be guaranteed as well, but
  364: *>         only the first such right-hand side is reported. If a small
  365: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  366: *>         the Jth right-hand side is the first with a normwise error
  367: *>         bound that is not guaranteed (the smallest J such
  368: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  369: *>         the Jth right-hand side is the first with either a normwise or
  370: *>         componentwise error bound that is not guaranteed (the smallest
  371: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  372: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  373: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  374: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  375: *>         ERR_BNDS_COMP.
  376: *> \endverbatim
  377: *
  378: *  Authors:
  379: *  ========
  380: *
  381: *> \author Univ. of Tennessee
  382: *> \author Univ. of California Berkeley
  383: *> \author Univ. of Colorado Denver
  384: *> \author NAG Ltd.
  385: *
  386: *> \ingroup complex16POcomputational
  387: *
  388: *  =====================================================================
  389:       SUBROUTINE ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
  390:      $                    LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  391:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  392:      $                    WORK, RWORK, INFO )
  393: *
  394: *  -- LAPACK computational routine --
  395: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  396: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  397: *
  398: *     .. Scalar Arguments ..
  399:       CHARACTER          UPLO, EQUED
  400:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  401:      $                   N_ERR_BNDS
  402:       DOUBLE PRECISION   RCOND
  403: *     ..
  404: *     .. Array Arguments ..
  405:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  406:      $                   X( LDX, * ), WORK( * )
  407:       DOUBLE PRECISION   RWORK( * ), S( * ), PARAMS(*), BERR( * ),
  408:      $                   ERR_BNDS_NORM( NRHS, * ),
  409:      $                   ERR_BNDS_COMP( NRHS, * )
  410: *     ..
  411: *
  412: *  ==================================================================
  413: *
  414: *     .. Parameters ..
  415:       DOUBLE PRECISION   ZERO, ONE
  416:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  417:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  418:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  419:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  420:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  421:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  422:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  423:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  424:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  425:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  426:      $                   LA_LINRX_CWISE_I
  427:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  428:      $                   LA_LINRX_ITHRESH_I = 2 )
  429:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  430:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  431:      $                   LA_LINRX_RCOND_I
  432:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  433:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  434: *     ..
  435: *     .. Local Scalars ..
  436:       CHARACTER(1)       NORM
  437:       LOGICAL            RCEQU
  438:       INTEGER            J, PREC_TYPE, REF_TYPE
  439:       INTEGER            N_NORMS
  440:       DOUBLE PRECISION   ANORM, RCOND_TMP
  441:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  442:       LOGICAL            IGNORE_CWISE
  443:       INTEGER            ITHRESH
  444:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
  445: *     ..
  446: *     .. External Subroutines ..
  447:       EXTERNAL           XERBLA, ZPOCON, ZLA_PORFSX_EXTENDED
  448: *     ..
  449: *     .. Intrinsic Functions ..
  450:       INTRINSIC          MAX, SQRT, TRANSFER
  451: *     ..
  452: *     .. External Functions ..
  453:       EXTERNAL           LSAME, ILAPREC
  454:       EXTERNAL           DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
  455:       DOUBLE PRECISION   DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
  456:       LOGICAL            LSAME
  457:       INTEGER            ILAPREC
  458: *     ..
  459: *     .. Executable Statements ..
  460: *
  461: *     Check the input parameters.
  462: *
  463:       INFO = 0
  464:       REF_TYPE = INT( ITREF_DEFAULT )
  465:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  466:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  467:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  468:          ELSE
  469:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  470:          END IF
  471:       END IF
  472: *
  473: *     Set default parameters.
  474: *
  475:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  476:       ITHRESH = INT( ITHRESH_DEFAULT )
  477:       RTHRESH = RTHRESH_DEFAULT
  478:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  479:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  480: *
  481:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  482:          IF ( PARAMS(LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  483:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  484:          ELSE
  485:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  486:          END IF
  487:       END IF
  488:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  489:          IF ( PARAMS(LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  490:             IF ( IGNORE_CWISE ) THEN
  491:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  492:             ELSE
  493:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  494:             END IF
  495:          ELSE
  496:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  497:          END IF
  498:       END IF
  499:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  500:          N_NORMS = 0
  501:       ELSE IF ( IGNORE_CWISE ) THEN
  502:          N_NORMS = 1
  503:       ELSE
  504:          N_NORMS = 2
  505:       END IF
  506: *
  507:       RCEQU = LSAME( EQUED, 'Y' )
  508: *
  509: *     Test input parameters.
  510: *
  511:       IF (.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  512:         INFO = -1
  513:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  514:         INFO = -2
  515:       ELSE IF( N.LT.0 ) THEN
  516:         INFO = -3
  517:       ELSE IF( NRHS.LT.0 ) THEN
  518:         INFO = -4
  519:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  520:         INFO = -6
  521:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  522:         INFO = -8
  523:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  524:         INFO = -11
  525:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  526:         INFO = -13
  527:       END IF
  528:       IF( INFO.NE.0 ) THEN
  529:         CALL XERBLA( 'ZPORFSX', -INFO )
  530:         RETURN
  531:       END IF
  532: *
  533: *     Quick return if possible.
  534: *
  535:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  536:          RCOND = 1.0D+0
  537:          DO J = 1, NRHS
  538:             BERR( J ) = 0.0D+0
  539:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  540:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  541:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  542:             END IF
  543:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  544:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  545:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  546:             END IF
  547:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  548:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  549:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  550:             END IF
  551:          END DO
  552:          RETURN
  553:       END IF
  554: *
  555: *     Default to failure.
  556: *
  557:       RCOND = 0.0D+0
  558:       DO J = 1, NRHS
  559:          BERR( J ) = 1.0D+0
  560:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  561:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  562:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  563:          END IF
  564:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  565:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  566:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  567:          END IF
  568:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  569:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  570:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  571:          END IF
  572:       END DO
  573: *
  574: *     Compute the norm of A and the reciprocal of the condition
  575: *     number of A.
  576: *
  577:       NORM = 'I'
  578:       ANORM = ZLANHE( NORM, UPLO, N, A, LDA, RWORK )
  579:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK,
  580:      $     INFO )
  581: *
  582: *     Perform refinement on each right-hand side
  583: *
  584:       IF ( REF_TYPE .NE. 0 ) THEN
  585: 
  586:          PREC_TYPE = ILAPREC( 'E' )
  587: 
  588:          CALL ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N,
  589:      $        NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
  590:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  591:      $        WORK, RWORK, WORK(N+1),
  592:      $        TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
  593:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  594:      $        INFO )
  595:       END IF
  596: 
  597:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  598:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
  599: *
  600: *     Compute scaled normwise condition number cond(A*C).
  601: *
  602:          IF ( RCEQU ) THEN
  603:             RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
  604:      $           S, .TRUE., INFO, WORK, RWORK )
  605:          ELSE
  606:             RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
  607:      $           S, .FALSE., INFO, WORK, RWORK )
  608:          END IF
  609:          DO J = 1, NRHS
  610: *
  611: *     Cap the error at 1.0.
  612: *
  613:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  614:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  615:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  616: *
  617: *     Threshold the error (see LAWN).
  618: *
  619:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  620:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  621:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  622:                IF ( INFO .LE. N ) INFO = N + J
  623:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  624:      $     THEN
  625:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  626:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  627:             END IF
  628: *
  629: *     Save the condition number.
  630: *
  631:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  632:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  633:             END IF
  634: 
  635:          END DO
  636:       END IF
  637: 
  638:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
  639: *
  640: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  641: *     each right-hand side using the current solution as an estimate of
  642: *     the true solution.  If the componentwise error estimate is too
  643: *     large, then the solution is a lousy estimate of truth and the
  644: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  645: *     the inverse condition number is set to 0.0 when the estimated
  646: *     cwise error is at least CWISE_WRONG.
  647: *
  648:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  649:          DO J = 1, NRHS
  650:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  651:      $     THEN
  652:                RCOND_TMP = ZLA_PORCOND_X( UPLO, N, A, LDA, AF, LDAF,
  653:      $         X(1,J), INFO, WORK, RWORK )
  654:             ELSE
  655:                RCOND_TMP = 0.0D+0
  656:             END IF
  657: *
  658: *     Cap the error at 1.0.
  659: *
  660:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  661:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  662:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  663: *
  664: *     Threshold the error (see LAWN).
  665: *
  666:             IF (RCOND_TMP .LT. ILLRCOND_THRESH) THEN
  667:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  668:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  669:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  670:      $              .AND. INFO.LT.N + J ) INFO = N + J
  671:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  672:      $              .LT. ERR_LBND ) THEN
  673:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  674:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  675:             END IF
  676: *
  677: *     Save the condition number.
  678: *
  679:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  680:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  681:             END IF
  682: 
  683:          END DO
  684:       END IF
  685: *
  686:       RETURN
  687: *
  688: *     End of ZPORFSX
  689: *
  690:       END

CVSweb interface <joel.bertrand@systella.fr>