Annotation of rpl/lapack/lapack/zporfsx.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
                      2:      $                    LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                      3:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                      4:      $                    WORK, RWORK, INFO )
                      5: *
                      6: *     -- LAPACK routine (version 3.2.2)                                 --
                      7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
                      8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
                      9: *     -- June 2010                                                    --
                     10: *
                     11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
                     12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
                     13: *
                     14:       IMPLICIT NONE
                     15: *     ..
                     16: *     .. Scalar Arguments ..
                     17:       CHARACTER          UPLO, EQUED
                     18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     19:      $                   N_ERR_BNDS
                     20:       DOUBLE PRECISION   RCOND
                     21: *     ..
                     22: *     .. Array Arguments ..
                     23:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     24:      $                   X( LDX, * ), WORK( * )
                     25:       DOUBLE PRECISION   RWORK( * ), S( * ), PARAMS(*), BERR( * ),
                     26:      $                   ERR_BNDS_NORM( NRHS, * ),
                     27:      $                   ERR_BNDS_COMP( NRHS, * )
                     28: *     ..
                     29: *
                     30: *     Purpose
                     31: *     =======
                     32: *
                     33: *     ZPORFSX improves the computed solution to a system of linear
                     34: *     equations when the coefficient matrix is symmetric positive
                     35: *     definite, and provides error bounds and backward error estimates
                     36: *     for the solution.  In addition to normwise error bound, the code
                     37: *     provides maximum componentwise error bound if possible.  See
                     38: *     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
                     39: *     error bounds.
                     40: *
                     41: *     The original system of linear equations may have been equilibrated
                     42: *     before calling this routine, as described by arguments EQUED and S
                     43: *     below. In this case, the solution and error bounds returned are
                     44: *     for the original unequilibrated system.
                     45: *
                     46: *     Arguments
                     47: *     =========
                     48: *
                     49: *     Some optional parameters are bundled in the PARAMS array.  These
                     50: *     settings determine how refinement is performed, but often the
                     51: *     defaults are acceptable.  If the defaults are acceptable, users
                     52: *     can pass NPARAMS = 0 which prevents the source code from accessing
                     53: *     the PARAMS argument.
                     54: *
                     55: *     UPLO    (input) CHARACTER*1
                     56: *       = 'U':  Upper triangle of A is stored;
                     57: *       = 'L':  Lower triangle of A is stored.
                     58: *
                     59: *     EQUED   (input) CHARACTER*1
                     60: *     Specifies the form of equilibration that was done to A
                     61: *     before calling this routine. This is needed to compute
                     62: *     the solution and error bounds correctly.
                     63: *       = 'N':  No equilibration
                     64: *       = 'Y':  Both row and column equilibration, i.e., A has been
                     65: *               replaced by diag(S) * A * diag(S).
                     66: *               The right hand side B has been changed accordingly.
                     67: *
                     68: *     N       (input) INTEGER
                     69: *     The order of the matrix A.  N >= 0.
                     70: *
                     71: *     NRHS    (input) INTEGER
                     72: *     The number of right hand sides, i.e., the number of columns
                     73: *     of the matrices B and X.  NRHS >= 0.
                     74: *
                     75: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
                     76: *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     77: *     upper triangular part of A contains the upper triangular part
                     78: *     of the matrix A, and the strictly lower triangular part of A
                     79: *     is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     80: *     triangular part of A contains the lower triangular part of
                     81: *     the matrix A, and the strictly upper triangular part of A is
                     82: *     not referenced.
                     83: *
                     84: *     LDA     (input) INTEGER
                     85: *     The leading dimension of the array A.  LDA >= max(1,N).
                     86: *
                     87: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
                     88: *     The triangular factor U or L from the Cholesky factorization
                     89: *     A = U**T*U or A = L*L**T, as computed by DPOTRF.
                     90: *
                     91: *     LDAF    (input) INTEGER
                     92: *     The leading dimension of the array AF.  LDAF >= max(1,N).
                     93: *
                     94: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
                     95: *     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
                     96: *     the left and right by diag(S).  S is an input argument if FACT =
                     97: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                     98: *     = 'Y', each element of S must be positive.  If S is output, each
                     99: *     element of S is a power of the radix. If S is input, each element
                    100: *     of S should be a power of the radix to ensure a reliable solution
                    101: *     and error estimates. Scaling by powers of the radix does not cause
                    102: *     rounding errors unless the result underflows or overflows.
                    103: *     Rounding errors during scaling lead to refining with a matrix that
                    104: *     is not equivalent to the input matrix, producing error estimates
                    105: *     that may not be reliable.
                    106: *
                    107: *     B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                    108: *     The right hand side matrix B.
                    109: *
                    110: *     LDB     (input) INTEGER
                    111: *     The leading dimension of the array B.  LDB >= max(1,N).
                    112: *
                    113: *     X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                    114: *     On entry, the solution matrix X, as computed by DGETRS.
                    115: *     On exit, the improved solution matrix X.
                    116: *
                    117: *     LDX     (input) INTEGER
                    118: *     The leading dimension of the array X.  LDX >= max(1,N).
                    119: *
                    120: *     RCOND   (output) DOUBLE PRECISION
                    121: *     Reciprocal scaled condition number.  This is an estimate of the
                    122: *     reciprocal Skeel condition number of the matrix A after
                    123: *     equilibration (if done).  If this is less than the machine
                    124: *     precision (in particular, if it is zero), the matrix is singular
                    125: *     to working precision.  Note that the error may still be small even
                    126: *     if this number is very small and the matrix appears ill-
                    127: *     conditioned.
                    128: *
                    129: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    130: *     Componentwise relative backward error.  This is the
                    131: *     componentwise relative backward error of each solution vector X(j)
                    132: *     (i.e., the smallest relative change in any element of A or B that
                    133: *     makes X(j) an exact solution).
                    134: *
                    135: *     N_ERR_BNDS (input) INTEGER
                    136: *     Number of error bounds to return for each right hand side
                    137: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    138: *     ERR_BNDS_COMP below.
                    139: *
                    140: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    141: *     For each right-hand side, this array contains information about
                    142: *     various error bounds and condition numbers corresponding to the
                    143: *     normwise relative error, which is defined as follows:
                    144: *
                    145: *     Normwise relative error in the ith solution vector:
                    146: *             max_j (abs(XTRUE(j,i) - X(j,i)))
                    147: *            ------------------------------
                    148: *                  max_j abs(X(j,i))
                    149: *
                    150: *     The array is indexed by the type of error information as described
                    151: *     below. There currently are up to three pieces of information
                    152: *     returned.
                    153: *
                    154: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    155: *     right-hand side.
                    156: *
                    157: *     The second index in ERR_BNDS_NORM(:,err) contains the following
                    158: *     three fields:
                    159: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    160: *              reciprocal condition number is less than the threshold
                    161: *              sqrt(n) * dlamch('Epsilon').
                    162: *
                    163: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    164: *              almost certainly within a factor of 10 of the true error
                    165: *              so long as the next entry is greater than the threshold
                    166: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    167: *              be trusted if the previous boolean is true.
                    168: *
                    169: *     err = 3  Reciprocal condition number: Estimated normwise
                    170: *              reciprocal condition number.  Compared with the threshold
                    171: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    172: *              estimate is "guaranteed". These reciprocal condition
                    173: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    174: *              appropriately scaled matrix Z.
                    175: *              Let Z = S*A, where S scales each row by a power of the
                    176: *              radix so all absolute row sums of Z are approximately 1.
                    177: *
                    178: *     See Lapack Working Note 165 for further details and extra
                    179: *     cautions.
                    180: *
                    181: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    182: *     For each right-hand side, this array contains information about
                    183: *     various error bounds and condition numbers corresponding to the
                    184: *     componentwise relative error, which is defined as follows:
                    185: *
                    186: *     Componentwise relative error in the ith solution vector:
                    187: *                    abs(XTRUE(j,i) - X(j,i))
                    188: *             max_j ----------------------
                    189: *                         abs(X(j,i))
                    190: *
                    191: *     The array is indexed by the right-hand side i (on which the
                    192: *     componentwise relative error depends), and the type of error
                    193: *     information as described below. There currently are up to three
                    194: *     pieces of information returned for each right-hand side. If
                    195: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    196: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    197: *     the first (:,N_ERR_BNDS) entries are returned.
                    198: *
                    199: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    200: *     right-hand side.
                    201: *
                    202: *     The second index in ERR_BNDS_COMP(:,err) contains the following
                    203: *     three fields:
                    204: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    205: *              reciprocal condition number is less than the threshold
                    206: *              sqrt(n) * dlamch('Epsilon').
                    207: *
                    208: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    209: *              almost certainly within a factor of 10 of the true error
                    210: *              so long as the next entry is greater than the threshold
                    211: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    212: *              be trusted if the previous boolean is true.
                    213: *
                    214: *     err = 3  Reciprocal condition number: Estimated componentwise
                    215: *              reciprocal condition number.  Compared with the threshold
                    216: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    217: *              estimate is "guaranteed". These reciprocal condition
                    218: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    219: *              appropriately scaled matrix Z.
                    220: *              Let Z = S*(A*diag(x)), where x is the solution for the
                    221: *              current right-hand side and S scales each row of
                    222: *              A*diag(x) by a power of the radix so all absolute row
                    223: *              sums of Z are approximately 1.
                    224: *
                    225: *     See Lapack Working Note 165 for further details and extra
                    226: *     cautions.
                    227: *
                    228: *     NPARAMS (input) INTEGER
                    229: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    230: *     PARAMS array is never referenced and default values are used.
                    231: *
                    232: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
                    233: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    234: *     that entry will be filled with default value used for that
                    235: *     parameter.  Only positions up to NPARAMS are accessed; defaults
                    236: *     are used for higher-numbered parameters.
                    237: *
                    238: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    239: *            refinement or not.
                    240: *         Default: 1.0D+0
                    241: *            = 0.0 : No refinement is performed, and no error bounds are
                    242: *                    computed.
                    243: *            = 1.0 : Use the double-precision refinement algorithm,
                    244: *                    possibly with doubled-single computations if the
                    245: *                    compilation environment does not support DOUBLE
                    246: *                    PRECISION.
                    247: *              (other values are reserved for future use)
                    248: *
                    249: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    250: *            computations allowed for refinement.
                    251: *         Default: 10
                    252: *         Aggressive: Set to 100 to permit convergence using approximate
                    253: *                     factorizations or factorizations other than LU. If
                    254: *                     the factorization uses a technique other than
                    255: *                     Gaussian elimination, the guarantees in
                    256: *                     err_bnds_norm and err_bnds_comp may no longer be
                    257: *                     trustworthy.
                    258: *
                    259: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    260: *            will attempt to find a solution with small componentwise
                    261: *            relative error in the double-precision algorithm.  Positive
                    262: *            is true, 0.0 is false.
                    263: *         Default: 1.0 (attempt componentwise convergence)
                    264: *
                    265: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    266: *
                    267: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    268: *
                    269: *     INFO    (output) INTEGER
                    270: *       = 0:  Successful exit. The solution to every right-hand side is
                    271: *         guaranteed.
                    272: *       < 0:  If INFO = -i, the i-th argument had an illegal value
                    273: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    274: *         has been completed, but the factor U is exactly singular, so
                    275: *         the solution and error bounds could not be computed. RCOND = 0
                    276: *         is returned.
                    277: *       = N+J: The solution corresponding to the Jth right-hand side is
                    278: *         not guaranteed. The solutions corresponding to other right-
                    279: *         hand sides K with K > J may not be guaranteed as well, but
                    280: *         only the first such right-hand side is reported. If a small
                    281: *         componentwise error is not requested (PARAMS(3) = 0.0) then
                    282: *         the Jth right-hand side is the first with a normwise error
                    283: *         bound that is not guaranteed (the smallest J such
                    284: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    285: *         the Jth right-hand side is the first with either a normwise or
                    286: *         componentwise error bound that is not guaranteed (the smallest
                    287: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    288: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    289: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    290: *         about all of the right-hand sides check ERR_BNDS_NORM or
                    291: *         ERR_BNDS_COMP.
                    292: *
                    293: *     ==================================================================
                    294: *
                    295: *     .. Parameters ..
                    296:       DOUBLE PRECISION   ZERO, ONE
                    297:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    298:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    299:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    300:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    301:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    302:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    303:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    304:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    305:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    306:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    307:      $                   LA_LINRX_CWISE_I
                    308:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    309:      $                   LA_LINRX_ITHRESH_I = 2 )
                    310:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    311:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    312:      $                   LA_LINRX_RCOND_I
                    313:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    314:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    315: *     ..
                    316: *     .. Local Scalars ..
                    317:       CHARACTER(1)       NORM
                    318:       LOGICAL            RCEQU
                    319:       INTEGER            J, PREC_TYPE, REF_TYPE
                    320:       INTEGER            N_NORMS
                    321:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    322:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    323:       LOGICAL            IGNORE_CWISE
                    324:       INTEGER            ITHRESH
                    325:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    326: *     ..
                    327: *     .. External Subroutines ..
                    328:       EXTERNAL           XERBLA, ZPOCON, ZLA_PORFSX_EXTENDED
                    329: *     ..
                    330: *     .. Intrinsic Functions ..
                    331:       INTRINSIC          MAX, SQRT, TRANSFER
                    332: *     ..
                    333: *     .. External Functions ..
                    334:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
                    335:       EXTERNAL           DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
                    336:       DOUBLE PRECISION   DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
                    337:       LOGICAL            LSAME
                    338:       INTEGER            BLAS_FPINFO_X
                    339:       INTEGER            ILATRANS, ILAPREC
                    340: *     ..
                    341: *     .. Executable Statements ..
                    342: *
                    343: *     Check the input parameters.
                    344: *
                    345:       INFO = 0
                    346:       REF_TYPE = INT( ITREF_DEFAULT )
                    347:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    348:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    349:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    350:          ELSE
                    351:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    352:          END IF
                    353:       END IF
                    354: *
                    355: *     Set default parameters.
                    356: *
                    357:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    358:       ITHRESH = INT( ITHRESH_DEFAULT )
                    359:       RTHRESH = RTHRESH_DEFAULT
                    360:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    361:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    362: *
                    363:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    364:          IF ( PARAMS(LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    365:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    366:          ELSE
                    367:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    368:          END IF
                    369:       END IF
                    370:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    371:          IF ( PARAMS(LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    372:             IF ( IGNORE_CWISE ) THEN
                    373:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    374:             ELSE
                    375:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    376:             END IF
                    377:          ELSE
                    378:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    379:          END IF
                    380:       END IF
                    381:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    382:          N_NORMS = 0
                    383:       ELSE IF ( IGNORE_CWISE ) THEN
                    384:          N_NORMS = 1
                    385:       ELSE
                    386:          N_NORMS = 2
                    387:       END IF
                    388: *
                    389:       RCEQU = LSAME( EQUED, 'Y' )
                    390: *
                    391: *     Test input parameters.
                    392: *
                    393:       IF (.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    394:         INFO = -1
                    395:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
                    396:         INFO = -2
                    397:       ELSE IF( N.LT.0 ) THEN
                    398:         INFO = -3
                    399:       ELSE IF( NRHS.LT.0 ) THEN
                    400:         INFO = -4
                    401:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    402:         INFO = -6
                    403:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    404:         INFO = -8
                    405:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    406:         INFO = -11
                    407:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    408:         INFO = -13
                    409:       END IF
                    410:       IF( INFO.NE.0 ) THEN
                    411:         CALL XERBLA( 'ZPORFSX', -INFO )
                    412:         RETURN
                    413:       END IF
                    414: *
                    415: *     Quick return if possible.
                    416: *
                    417:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    418:          RCOND = 1.0D+0
                    419:          DO J = 1, NRHS
                    420:             BERR( J ) = 0.0D+0
                    421:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    422:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    423:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    424:             END IF
                    425:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    426:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    427:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    428:             END IF
                    429:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    430:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    431:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    432:             END IF
                    433:          END DO
                    434:          RETURN
                    435:       END IF
                    436: *
                    437: *     Default to failure.
                    438: *
                    439:       RCOND = 0.0D+0
                    440:       DO J = 1, NRHS
                    441:          BERR( J ) = 1.0D+0
                    442:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    443:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    444:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    445:          END IF
                    446:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    447:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    448:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    449:          END IF
                    450:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    451:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    452:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    453:          END IF
                    454:       END DO
                    455: *
                    456: *     Compute the norm of A and the reciprocal of the condition
                    457: *     number of A.
                    458: *
                    459:       NORM = 'I'
                    460:       ANORM = ZLANHE( NORM, UPLO, N, A, LDA, RWORK )
                    461:       CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK,
                    462:      $     INFO )
                    463: *
                    464: *     Perform refinement on each right-hand side
                    465: *
                    466:       IF ( REF_TYPE .NE. 0 ) THEN
                    467: 
                    468:          PREC_TYPE = ILAPREC( 'E' )
                    469: 
                    470:          CALL ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N,
                    471:      $        NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
                    472:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    473:      $        WORK, RWORK, WORK(N+1),
                    474:      $        TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
                    475:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    476:      $        INFO )
                    477:       END IF
                    478: 
                    479:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    480:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
                    481: *
                    482: *     Compute scaled normwise condition number cond(A*C).
                    483: *
                    484:          IF ( RCEQU ) THEN
                    485:             RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
                    486:      $           S, .TRUE., INFO, WORK, RWORK )
                    487:          ELSE
                    488:             RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
                    489:      $           S, .FALSE., INFO, WORK, RWORK )
                    490:          END IF
                    491:          DO J = 1, NRHS
                    492: *
                    493: *     Cap the error at 1.0.
                    494: *
                    495:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    496:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    497:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    498: *
                    499: *     Threshold the error (see LAWN).
                    500: *
                    501:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    502:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    503:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    504:                IF ( INFO .LE. N ) INFO = N + J
                    505:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    506:      $     THEN
                    507:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    508:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    509:             END IF
                    510: *
                    511: *     Save the condition number.
                    512: *
                    513:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    514:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    515:             END IF
                    516: 
                    517:          END DO
                    518:       END IF
                    519: 
                    520:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
                    521: *
                    522: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    523: *     each right-hand side using the current solution as an estimate of
                    524: *     the true solution.  If the componentwise error estimate is too
                    525: *     large, then the solution is a lousy estimate of truth and the
                    526: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    527: *     the inverse condition number is set to 0.0 when the estimated
                    528: *     cwise error is at least CWISE_WRONG.
                    529: *
                    530:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    531:          DO J = 1, NRHS
                    532:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    533:      $     THEN
                    534:                RCOND_TMP = ZLA_PORCOND_X( UPLO, N, A, LDA, AF, LDAF,
                    535:      $         X(1,J), INFO, WORK, RWORK )
                    536:             ELSE
                    537:                RCOND_TMP = 0.0D+0
                    538:             END IF
                    539: *
                    540: *     Cap the error at 1.0.
                    541: *
                    542:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    543:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    544:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    545: *
                    546: *     Threshold the error (see LAWN).
                    547: *
                    548:             IF (RCOND_TMP .LT. ILLRCOND_THRESH) THEN
                    549:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    550:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    551:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    552:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    553:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    554:      $              .LT. ERR_LBND ) THEN
                    555:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    556:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    557:             END IF
                    558: *
                    559: *     Save the condition number.
                    560: *
                    561:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    562:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    563:             END IF
                    564: 
                    565:          END DO
                    566:       END IF
                    567: *
                    568:       RETURN
                    569: *
                    570: *     End of ZPORFSX
                    571: *
                    572:       END

CVSweb interface <joel.bertrand@systella.fr>