File:  [local] / rpl / lapack / lapack / zpftri.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:33 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPFTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPFTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( 0: * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZPFTRI computes the inverse of a complex Hermitian positive definite
   37: *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
   38: *> computed by ZPFTRF.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] TRANSR
   45: *> \verbatim
   46: *>          TRANSR is CHARACTER*1
   47: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   48: *>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   49: *> \endverbatim
   50: *>
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
   67: *>          On entry, the Hermitian matrix A in RFP format. RFP format is
   68: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   69: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   70: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   71: *>          the Conjugate-transpose of RFP A as defined when
   72: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   73: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   74: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
   75: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   76: *>          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   77: *>          is odd. See the Note below for more details.
   78: *>
   79: *>          On exit, the Hermitian inverse of the original matrix, in the
   80: *>          same storage format.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] INFO
   84: *> \verbatim
   85: *>          INFO is INTEGER
   86: *>          = 0:  successful exit
   87: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   88: *>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
   89: *>                zero, and the inverse could not be computed.
   90: *> \endverbatim
   91: *
   92: *  Authors:
   93: *  ========
   94: *
   95: *> \author Univ. of Tennessee
   96: *> \author Univ. of California Berkeley
   97: *> \author Univ. of Colorado Denver
   98: *> \author NAG Ltd.
   99: *
  100: *> \ingroup complex16OTHERcomputational
  101: *
  102: *> \par Further Details:
  103: *  =====================
  104: *>
  105: *> \verbatim
  106: *>
  107: *>  We first consider Standard Packed Format when N is even.
  108: *>  We give an example where N = 6.
  109: *>
  110: *>      AP is Upper             AP is Lower
  111: *>
  112: *>   00 01 02 03 04 05       00
  113: *>      11 12 13 14 15       10 11
  114: *>         22 23 24 25       20 21 22
  115: *>            33 34 35       30 31 32 33
  116: *>               44 45       40 41 42 43 44
  117: *>                  55       50 51 52 53 54 55
  118: *>
  119: *>
  120: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  121: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  122: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  123: *>  conjugate-transpose of the first three columns of AP upper.
  124: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  125: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  126: *>  conjugate-transpose of the last three columns of AP lower.
  127: *>  To denote conjugate we place -- above the element. This covers the
  128: *>  case N even and TRANSR = 'N'.
  129: *>
  130: *>         RFP A                   RFP A
  131: *>
  132: *>                                -- -- --
  133: *>        03 04 05                33 43 53
  134: *>                                   -- --
  135: *>        13 14 15                00 44 54
  136: *>                                      --
  137: *>        23 24 25                10 11 55
  138: *>
  139: *>        33 34 35                20 21 22
  140: *>        --
  141: *>        00 44 45                30 31 32
  142: *>        -- --
  143: *>        01 11 55                40 41 42
  144: *>        -- -- --
  145: *>        02 12 22                50 51 52
  146: *>
  147: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  148: *>  transpose of RFP A above. One therefore gets:
  149: *>
  150: *>
  151: *>           RFP A                   RFP A
  152: *>
  153: *>     -- -- -- --                -- -- -- -- -- --
  154: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  155: *>     -- -- -- -- --                -- -- -- -- --
  156: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  157: *>     -- -- -- -- -- --                -- -- -- --
  158: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  159: *>
  160: *>
  161: *>  We next  consider Standard Packed Format when N is odd.
  162: *>  We give an example where N = 5.
  163: *>
  164: *>     AP is Upper                 AP is Lower
  165: *>
  166: *>   00 01 02 03 04              00
  167: *>      11 12 13 14              10 11
  168: *>         22 23 24              20 21 22
  169: *>            33 34              30 31 32 33
  170: *>               44              40 41 42 43 44
  171: *>
  172: *>
  173: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  174: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  175: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  176: *>  conjugate-transpose of the first two   columns of AP upper.
  177: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  178: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  179: *>  conjugate-transpose of the last two   columns of AP lower.
  180: *>  To denote conjugate we place -- above the element. This covers the
  181: *>  case N odd  and TRANSR = 'N'.
  182: *>
  183: *>         RFP A                   RFP A
  184: *>
  185: *>                                   -- --
  186: *>        02 03 04                00 33 43
  187: *>                                      --
  188: *>        12 13 14                10 11 44
  189: *>
  190: *>        22 23 24                20 21 22
  191: *>        --
  192: *>        00 33 34                30 31 32
  193: *>        -- --
  194: *>        01 11 44                40 41 42
  195: *>
  196: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  197: *>  transpose of RFP A above. One therefore gets:
  198: *>
  199: *>
  200: *>           RFP A                   RFP A
  201: *>
  202: *>     -- -- --                   -- -- -- -- -- --
  203: *>     02 12 22 00 01             00 10 20 30 40 50
  204: *>     -- -- -- --                   -- -- -- -- --
  205: *>     03 13 23 33 11             33 11 21 31 41 51
  206: *>     -- -- -- -- --                   -- -- -- --
  207: *>     04 14 24 34 44             43 44 22 32 42 52
  208: *> \endverbatim
  209: *>
  210: *  =====================================================================
  211:       SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
  212: *
  213: *  -- LAPACK computational routine --
  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216: *
  217: *     .. Scalar Arguments ..
  218:       CHARACTER          TRANSR, UPLO
  219:       INTEGER            INFO, N
  220: *     .. Array Arguments ..
  221:       COMPLEX*16         A( 0: * )
  222: *     ..
  223: *
  224: *  =====================================================================
  225: *
  226: *     .. Parameters ..
  227:       DOUBLE PRECISION   ONE
  228:       COMPLEX*16         CONE
  229:       PARAMETER          ( ONE = 1.D0, CONE = ( 1.D0, 0.D0 ) )
  230: *     ..
  231: *     .. Local Scalars ..
  232:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  233:       INTEGER            N1, N2, K
  234: *     ..
  235: *     .. External Functions ..
  236:       LOGICAL            LSAME
  237:       EXTERNAL           LSAME
  238: *     ..
  239: *     .. External Subroutines ..
  240:       EXTERNAL           XERBLA, ZTFTRI, ZLAUUM, ZTRMM, ZHERK
  241: *     ..
  242: *     .. Intrinsic Functions ..
  243:       INTRINSIC          MOD
  244: *     ..
  245: *     .. Executable Statements ..
  246: *
  247: *     Test the input parameters.
  248: *
  249:       INFO = 0
  250:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  251:       LOWER = LSAME( UPLO, 'L' )
  252:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  253:          INFO = -1
  254:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  255:          INFO = -2
  256:       ELSE IF( N.LT.0 ) THEN
  257:          INFO = -3
  258:       END IF
  259:       IF( INFO.NE.0 ) THEN
  260:          CALL XERBLA( 'ZPFTRI', -INFO )
  261:          RETURN
  262:       END IF
  263: *
  264: *     Quick return if possible
  265: *
  266:       IF( N.EQ.0 )
  267:      $   RETURN
  268: *
  269: *     Invert the triangular Cholesky factor U or L.
  270: *
  271:       CALL ZTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
  272:       IF( INFO.GT.0 )
  273:      $   RETURN
  274: *
  275: *     If N is odd, set NISODD = .TRUE.
  276: *     If N is even, set K = N/2 and NISODD = .FALSE.
  277: *
  278:       IF( MOD( N, 2 ).EQ.0 ) THEN
  279:          K = N / 2
  280:          NISODD = .FALSE.
  281:       ELSE
  282:          NISODD = .TRUE.
  283:       END IF
  284: *
  285: *     Set N1 and N2 depending on LOWER
  286: *
  287:       IF( LOWER ) THEN
  288:          N2 = N / 2
  289:          N1 = N - N2
  290:       ELSE
  291:          N1 = N / 2
  292:          N2 = N - N1
  293:       END IF
  294: *
  295: *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
  296: *     inv(L)^C*inv(L). There are eight cases.
  297: *
  298:       IF( NISODD ) THEN
  299: *
  300: *        N is odd
  301: *
  302:          IF( NORMALTRANSR ) THEN
  303: *
  304: *           N is odd and TRANSR = 'N'
  305: *
  306:             IF( LOWER ) THEN
  307: *
  308: *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
  309: *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
  310: *              T1 -> a(0), T2 -> a(n), S -> a(N1)
  311: *
  312:                CALL ZLAUUM( 'L', N1, A( 0 ), N, INFO )
  313:                CALL ZHERK( 'L', 'C', N1, N2, ONE, A( N1 ), N, ONE,
  314:      $                     A( 0 ), N )
  315:                CALL ZTRMM( 'L', 'U', 'N', 'N', N2, N1, CONE, A( N ), N,
  316:      $                     A( N1 ), N )
  317:                CALL ZLAUUM( 'U', N2, A( N ), N, INFO )
  318: *
  319:             ELSE
  320: *
  321: *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
  322: *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
  323: *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
  324: *
  325:                CALL ZLAUUM( 'L', N1, A( N2 ), N, INFO )
  326:                CALL ZHERK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
  327:      $                     A( N2 ), N )
  328:                CALL ZTRMM( 'R', 'U', 'C', 'N', N1, N2, CONE, A( N1 ), N,
  329:      $                     A( 0 ), N )
  330:                CALL ZLAUUM( 'U', N2, A( N1 ), N, INFO )
  331: *
  332:             END IF
  333: *
  334:          ELSE
  335: *
  336: *           N is odd and TRANSR = 'C'
  337: *
  338:             IF( LOWER ) THEN
  339: *
  340: *              SRPA for LOWER, TRANSPOSE, and N is odd
  341: *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
  342: *
  343:                CALL ZLAUUM( 'U', N1, A( 0 ), N1, INFO )
  344:                CALL ZHERK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
  345:      $                     A( 0 ), N1 )
  346:                CALL ZTRMM( 'R', 'L', 'N', 'N', N1, N2, CONE, A( 1 ), N1,
  347:      $                     A( N1*N1 ), N1 )
  348:                CALL ZLAUUM( 'L', N2, A( 1 ), N1, INFO )
  349: *
  350:             ELSE
  351: *
  352: *              SRPA for UPPER, TRANSPOSE, and N is odd
  353: *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
  354: *
  355:                CALL ZLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
  356:                CALL ZHERK( 'U', 'C', N1, N2, ONE, A( 0 ), N2, ONE,
  357:      $                     A( N2*N2 ), N2 )
  358:                CALL ZTRMM( 'L', 'L', 'C', 'N', N2, N1, CONE, A( N1*N2 ),
  359:      $                     N2, A( 0 ), N2 )
  360:                CALL ZLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
  361: *
  362:             END IF
  363: *
  364:          END IF
  365: *
  366:       ELSE
  367: *
  368: *        N is even
  369: *
  370:          IF( NORMALTRANSR ) THEN
  371: *
  372: *           N is even and TRANSR = 'N'
  373: *
  374:             IF( LOWER ) THEN
  375: *
  376: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  377: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  378: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  379: *
  380:                CALL ZLAUUM( 'L', K, A( 1 ), N+1, INFO )
  381:                CALL ZHERK( 'L', 'C', K, K, ONE, A( K+1 ), N+1, ONE,
  382:      $                     A( 1 ), N+1 )
  383:                CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, A( 0 ), N+1,
  384:      $                     A( K+1 ), N+1 )
  385:                CALL ZLAUUM( 'U', K, A( 0 ), N+1, INFO )
  386: *
  387:             ELSE
  388: *
  389: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  390: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  391: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  392: *
  393:                CALL ZLAUUM( 'L', K, A( K+1 ), N+1, INFO )
  394:                CALL ZHERK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
  395:      $                     A( K+1 ), N+1 )
  396:                CALL ZTRMM( 'R', 'U', 'C', 'N', K, K, CONE, A( K ), N+1,
  397:      $                     A( 0 ), N+1 )
  398:                CALL ZLAUUM( 'U', K, A( K ), N+1, INFO )
  399: *
  400:             END IF
  401: *
  402:          ELSE
  403: *
  404: *           N is even and TRANSR = 'C'
  405: *
  406:             IF( LOWER ) THEN
  407: *
  408: *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
  409: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
  410: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  411: *
  412:                CALL ZLAUUM( 'U', K, A( K ), K, INFO )
  413:                CALL ZHERK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
  414:      $                     A( K ), K )
  415:                CALL ZTRMM( 'R', 'L', 'N', 'N', K, K, CONE, A( 0 ), K,
  416:      $                     A( K*( K+1 ) ), K )
  417:                CALL ZLAUUM( 'L', K, A( 0 ), K, INFO )
  418: *
  419:             ELSE
  420: *
  421: *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
  422: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
  423: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  424: *
  425:                CALL ZLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
  426:                CALL ZHERK( 'U', 'C', K, K, ONE, A( 0 ), K, ONE,
  427:      $                     A( K*( K+1 ) ), K )
  428:                CALL ZTRMM( 'L', 'L', 'C', 'N', K, K, CONE, A( K*K ), K,
  429:      $                     A( 0 ), K )
  430:                CALL ZLAUUM( 'L', K, A( K*K ), K, INFO )
  431: *
  432:             END IF
  433: *
  434:          END IF
  435: *
  436:       END IF
  437: *
  438:       RETURN
  439: *
  440: *     End of ZPFTRI
  441: *
  442:       END

CVSweb interface <joel.bertrand@systella.fr>