Annotation of rpl/lapack/lapack/zpftri.f, revision 1.16

1.7       bertrand    1: *> \brief \b ZPFTRI
                      2: *
                      3: *  =========== DOCUMENTATION ===========
1.1       bertrand    4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
1.7       bertrand    8: *> \htmlonly
1.13      bertrand    9: *> Download ZPFTRI + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftri.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftri.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftri.f">
1.7       bertrand   15: *> [TXT]</a>
1.13      bertrand   16: *> \endhtmlonly
1.7       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
1.13      bertrand   22: *
1.7       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          TRANSR, UPLO
                     25: *       INTEGER            INFO, N
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( 0: * )
                     28: *       ..
1.13      bertrand   29: *
1.7       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZPFTRI computes the inverse of a complex Hermitian positive definite
                     37: *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
                     38: *> computed by ZPFTRF.
                     39: *> \endverbatim
                     40: *
                     41: *  Arguments:
                     42: *  ==========
                     43: *
                     44: *> \param[in] TRANSR
                     45: *> \verbatim
                     46: *>          TRANSR is CHARACTER*1
                     47: *>          = 'N':  The Normal TRANSR of RFP A is stored;
                     48: *>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
                     49: *> \endverbatim
                     50: *>
                     51: *> \param[in] UPLO
                     52: *> \verbatim
                     53: *>          UPLO is CHARACTER*1
                     54: *>          = 'U':  Upper triangle of A is stored;
                     55: *>          = 'L':  Lower triangle of A is stored.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
                     67: *>          On entry, the Hermitian matrix A in RFP format. RFP format is
                     68: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                     69: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
                     70: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
                     71: *>          the Conjugate-transpose of RFP A as defined when
                     72: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
                     73: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
                     74: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
                     75: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
                     76: *>          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
                     77: *>          is odd. See the Note below for more details.
                     78: *>
                     79: *>          On exit, the Hermitian inverse of the original matrix, in the
                     80: *>          same storage format.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[out] INFO
                     84: *> \verbatim
                     85: *>          INFO is INTEGER
                     86: *>          = 0:  successful exit
                     87: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     88: *>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
                     89: *>                zero, and the inverse could not be computed.
                     90: *> \endverbatim
                     91: *
                     92: *  Authors:
                     93: *  ========
                     94: *
1.13      bertrand   95: *> \author Univ. of Tennessee
                     96: *> \author Univ. of California Berkeley
                     97: *> \author Univ. of Colorado Denver
                     98: *> \author NAG Ltd.
1.7       bertrand   99: *
                    100: *> \ingroup complex16OTHERcomputational
                    101: *
                    102: *> \par Further Details:
                    103: *  =====================
                    104: *>
                    105: *> \verbatim
                    106: *>
                    107: *>  We first consider Standard Packed Format when N is even.
                    108: *>  We give an example where N = 6.
                    109: *>
                    110: *>      AP is Upper             AP is Lower
                    111: *>
                    112: *>   00 01 02 03 04 05       00
                    113: *>      11 12 13 14 15       10 11
                    114: *>         22 23 24 25       20 21 22
                    115: *>            33 34 35       30 31 32 33
                    116: *>               44 45       40 41 42 43 44
                    117: *>                  55       50 51 52 53 54 55
                    118: *>
                    119: *>
                    120: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    121: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
                    122: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
                    123: *>  conjugate-transpose of the first three columns of AP upper.
                    124: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
                    125: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
                    126: *>  conjugate-transpose of the last three columns of AP lower.
                    127: *>  To denote conjugate we place -- above the element. This covers the
                    128: *>  case N even and TRANSR = 'N'.
                    129: *>
                    130: *>         RFP A                   RFP A
                    131: *>
                    132: *>                                -- -- --
                    133: *>        03 04 05                33 43 53
                    134: *>                                   -- --
                    135: *>        13 14 15                00 44 54
                    136: *>                                      --
                    137: *>        23 24 25                10 11 55
                    138: *>
                    139: *>        33 34 35                20 21 22
                    140: *>        --
                    141: *>        00 44 45                30 31 32
                    142: *>        -- --
                    143: *>        01 11 55                40 41 42
                    144: *>        -- -- --
                    145: *>        02 12 22                50 51 52
                    146: *>
                    147: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
                    148: *>  transpose of RFP A above. One therefore gets:
                    149: *>
                    150: *>
                    151: *>           RFP A                   RFP A
                    152: *>
                    153: *>     -- -- -- --                -- -- -- -- -- --
                    154: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
                    155: *>     -- -- -- -- --                -- -- -- -- --
                    156: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
                    157: *>     -- -- -- -- -- --                -- -- -- --
                    158: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
                    159: *>
                    160: *>
                    161: *>  We next  consider Standard Packed Format when N is odd.
                    162: *>  We give an example where N = 5.
                    163: *>
                    164: *>     AP is Upper                 AP is Lower
                    165: *>
                    166: *>   00 01 02 03 04              00
                    167: *>      11 12 13 14              10 11
                    168: *>         22 23 24              20 21 22
                    169: *>            33 34              30 31 32 33
                    170: *>               44              40 41 42 43 44
                    171: *>
                    172: *>
                    173: *>  Let TRANSR = 'N'. RFP holds AP as follows:
                    174: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
                    175: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
                    176: *>  conjugate-transpose of the first two   columns of AP upper.
                    177: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
                    178: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
                    179: *>  conjugate-transpose of the last two   columns of AP lower.
                    180: *>  To denote conjugate we place -- above the element. This covers the
                    181: *>  case N odd  and TRANSR = 'N'.
                    182: *>
                    183: *>         RFP A                   RFP A
                    184: *>
                    185: *>                                   -- --
                    186: *>        02 03 04                00 33 43
                    187: *>                                      --
                    188: *>        12 13 14                10 11 44
                    189: *>
                    190: *>        22 23 24                20 21 22
                    191: *>        --
                    192: *>        00 33 34                30 31 32
                    193: *>        -- --
                    194: *>        01 11 44                40 41 42
                    195: *>
                    196: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
                    197: *>  transpose of RFP A above. One therefore gets:
                    198: *>
                    199: *>
                    200: *>           RFP A                   RFP A
                    201: *>
                    202: *>     -- -- --                   -- -- -- -- -- --
                    203: *>     02 12 22 00 01             00 10 20 30 40 50
                    204: *>     -- -- -- --                   -- -- -- -- --
                    205: *>     03 13 23 33 11             33 11 21 31 41 51
                    206: *>     -- -- -- -- --                   -- -- -- --
                    207: *>     04 14 24 34 44             43 44 22 32 42 52
                    208: *> \endverbatim
                    209: *>
                    210: *  =====================================================================
                    211:       SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
1.1       bertrand  212: *
1.16    ! bertrand  213: *  -- LAPACK computational routine --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    216: *
                    217: *     .. Scalar Arguments ..
                    218:       CHARACTER          TRANSR, UPLO
                    219:       INTEGER            INFO, N
                    220: *     .. Array Arguments ..
                    221:       COMPLEX*16         A( 0: * )
                    222: *     ..
                    223: *
                    224: *  =====================================================================
                    225: *
                    226: *     .. Parameters ..
                    227:       DOUBLE PRECISION   ONE
                    228:       COMPLEX*16         CONE
                    229:       PARAMETER          ( ONE = 1.D0, CONE = ( 1.D0, 0.D0 ) )
                    230: *     ..
                    231: *     .. Local Scalars ..
                    232:       LOGICAL            LOWER, NISODD, NORMALTRANSR
                    233:       INTEGER            N1, N2, K
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       LOGICAL            LSAME
                    237:       EXTERNAL           LSAME
                    238: *     ..
                    239: *     .. External Subroutines ..
                    240:       EXTERNAL           XERBLA, ZTFTRI, ZLAUUM, ZTRMM, ZHERK
                    241: *     ..
                    242: *     .. Intrinsic Functions ..
                    243:       INTRINSIC          MOD
                    244: *     ..
                    245: *     .. Executable Statements ..
                    246: *
                    247: *     Test the input parameters.
                    248: *
                    249:       INFO = 0
                    250:       NORMALTRANSR = LSAME( TRANSR, 'N' )
                    251:       LOWER = LSAME( UPLO, 'L' )
                    252:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
                    253:          INFO = -1
                    254:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
                    255:          INFO = -2
                    256:       ELSE IF( N.LT.0 ) THEN
                    257:          INFO = -3
                    258:       END IF
                    259:       IF( INFO.NE.0 ) THEN
                    260:          CALL XERBLA( 'ZPFTRI', -INFO )
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Quick return if possible
                    265: *
                    266:       IF( N.EQ.0 )
1.6       bertrand  267:      $   RETURN
1.1       bertrand  268: *
                    269: *     Invert the triangular Cholesky factor U or L.
                    270: *
                    271:       CALL ZTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
                    272:       IF( INFO.GT.0 )
1.6       bertrand  273:      $   RETURN
1.1       bertrand  274: *
                    275: *     If N is odd, set NISODD = .TRUE.
                    276: *     If N is even, set K = N/2 and NISODD = .FALSE.
                    277: *
                    278:       IF( MOD( N, 2 ).EQ.0 ) THEN
                    279:          K = N / 2
                    280:          NISODD = .FALSE.
                    281:       ELSE
                    282:          NISODD = .TRUE.
                    283:       END IF
                    284: *
                    285: *     Set N1 and N2 depending on LOWER
                    286: *
                    287:       IF( LOWER ) THEN
                    288:          N2 = N / 2
                    289:          N1 = N - N2
                    290:       ELSE
                    291:          N1 = N / 2
                    292:          N2 = N - N1
                    293:       END IF
                    294: *
                    295: *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
                    296: *     inv(L)^C*inv(L). There are eight cases.
                    297: *
                    298:       IF( NISODD ) THEN
                    299: *
                    300: *        N is odd
                    301: *
                    302:          IF( NORMALTRANSR ) THEN
                    303: *
                    304: *           N is odd and TRANSR = 'N'
                    305: *
                    306:             IF( LOWER ) THEN
                    307: *
                    308: *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
                    309: *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
                    310: *              T1 -> a(0), T2 -> a(n), S -> a(N1)
                    311: *
                    312:                CALL ZLAUUM( 'L', N1, A( 0 ), N, INFO )
                    313:                CALL ZHERK( 'L', 'C', N1, N2, ONE, A( N1 ), N, ONE,
1.6       bertrand  314:      $                     A( 0 ), N )
1.1       bertrand  315:                CALL ZTRMM( 'L', 'U', 'N', 'N', N2, N1, CONE, A( N ), N,
1.6       bertrand  316:      $                     A( N1 ), N )
1.1       bertrand  317:                CALL ZLAUUM( 'U', N2, A( N ), N, INFO )
                    318: *
                    319:             ELSE
                    320: *
                    321: *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
                    322: *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
                    323: *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
                    324: *
                    325:                CALL ZLAUUM( 'L', N1, A( N2 ), N, INFO )
                    326:                CALL ZHERK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
1.6       bertrand  327:      $                     A( N2 ), N )
1.1       bertrand  328:                CALL ZTRMM( 'R', 'U', 'C', 'N', N1, N2, CONE, A( N1 ), N,
1.6       bertrand  329:      $                     A( 0 ), N )
1.1       bertrand  330:                CALL ZLAUUM( 'U', N2, A( N1 ), N, INFO )
                    331: *
                    332:             END IF
                    333: *
                    334:          ELSE
                    335: *
                    336: *           N is odd and TRANSR = 'C'
                    337: *
                    338:             IF( LOWER ) THEN
                    339: *
                    340: *              SRPA for LOWER, TRANSPOSE, and N is odd
                    341: *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
                    342: *
                    343:                CALL ZLAUUM( 'U', N1, A( 0 ), N1, INFO )
                    344:                CALL ZHERK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
1.6       bertrand  345:      $                     A( 0 ), N1 )
1.1       bertrand  346:                CALL ZTRMM( 'R', 'L', 'N', 'N', N1, N2, CONE, A( 1 ), N1,
1.6       bertrand  347:      $                     A( N1*N1 ), N1 )
1.1       bertrand  348:                CALL ZLAUUM( 'L', N2, A( 1 ), N1, INFO )
                    349: *
                    350:             ELSE
                    351: *
                    352: *              SRPA for UPPER, TRANSPOSE, and N is odd
                    353: *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
                    354: *
                    355:                CALL ZLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
                    356:                CALL ZHERK( 'U', 'C', N1, N2, ONE, A( 0 ), N2, ONE,
1.6       bertrand  357:      $                     A( N2*N2 ), N2 )
1.1       bertrand  358:                CALL ZTRMM( 'L', 'L', 'C', 'N', N2, N1, CONE, A( N1*N2 ),
1.6       bertrand  359:      $                     N2, A( 0 ), N2 )
1.1       bertrand  360:                CALL ZLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
                    361: *
                    362:             END IF
                    363: *
                    364:          END IF
                    365: *
                    366:       ELSE
                    367: *
                    368: *        N is even
                    369: *
                    370:          IF( NORMALTRANSR ) THEN
                    371: *
                    372: *           N is even and TRANSR = 'N'
                    373: *
                    374:             IF( LOWER ) THEN
                    375: *
                    376: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    377: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
                    378: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
                    379: *
                    380:                CALL ZLAUUM( 'L', K, A( 1 ), N+1, INFO )
                    381:                CALL ZHERK( 'L', 'C', K, K, ONE, A( K+1 ), N+1, ONE,
1.6       bertrand  382:      $                     A( 1 ), N+1 )
1.1       bertrand  383:                CALL ZTRMM( 'L', 'U', 'N', 'N', K, K, CONE, A( 0 ), N+1,
1.6       bertrand  384:      $                     A( K+1 ), N+1 )
1.1       bertrand  385:                CALL ZLAUUM( 'U', K, A( 0 ), N+1, INFO )
                    386: *
                    387:             ELSE
                    388: *
                    389: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
                    390: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
                    391: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
                    392: *
                    393:                CALL ZLAUUM( 'L', K, A( K+1 ), N+1, INFO )
                    394:                CALL ZHERK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
1.6       bertrand  395:      $                     A( K+1 ), N+1 )
1.1       bertrand  396:                CALL ZTRMM( 'R', 'U', 'C', 'N', K, K, CONE, A( K ), N+1,
1.6       bertrand  397:      $                     A( 0 ), N+1 )
1.1       bertrand  398:                CALL ZLAUUM( 'U', K, A( K ), N+1, INFO )
                    399: *
                    400:             END IF
                    401: *
                    402:          ELSE
                    403: *
                    404: *           N is even and TRANSR = 'C'
                    405: *
                    406:             IF( LOWER ) THEN
                    407: *
                    408: *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
                    409: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
                    410: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
                    411: *
                    412:                CALL ZLAUUM( 'U', K, A( K ), K, INFO )
                    413:                CALL ZHERK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
1.6       bertrand  414:      $                     A( K ), K )
1.1       bertrand  415:                CALL ZTRMM( 'R', 'L', 'N', 'N', K, K, CONE, A( 0 ), K,
1.6       bertrand  416:      $                     A( K*( K+1 ) ), K )
1.1       bertrand  417:                CALL ZLAUUM( 'L', K, A( 0 ), K, INFO )
                    418: *
                    419:             ELSE
                    420: *
                    421: *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
                    422: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
                    423: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
                    424: *
                    425:                CALL ZLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
                    426:                CALL ZHERK( 'U', 'C', K, K, ONE, A( 0 ), K, ONE,
1.6       bertrand  427:      $                     A( K*( K+1 ) ), K )
1.1       bertrand  428:                CALL ZTRMM( 'L', 'L', 'C', 'N', K, K, CONE, A( K*K ), K,
1.6       bertrand  429:      $                     A( 0 ), K )
1.1       bertrand  430:                CALL ZLAUUM( 'L', K, A( K*K ), K, INFO )
                    431: *
                    432:             END IF
                    433: *
                    434:          END IF
                    435: *
                    436:       END IF
                    437: *
                    438:       RETURN
                    439: *
                    440: *     End of ZPFTRI
                    441: *
                    442:       END

CVSweb interface <joel.bertrand@systella.fr>