File:  [local] / rpl / lapack / lapack / zpftrf.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:33 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZPFTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZPFTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            N, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( 0: * )
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZPFTRF computes the Cholesky factorization of a complex Hermitian
   37: *> positive definite matrix A.
   38: *>
   39: *> The factorization has the form
   40: *>    A = U**H * U,  if UPLO = 'U', or
   41: *>    A = L  * L**H,  if UPLO = 'L',
   42: *> where U is an upper triangular matrix and L is lower triangular.
   43: *>
   44: *> This is the block version of the algorithm, calling Level 3 BLAS.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] TRANSR
   51: *> \verbatim
   52: *>          TRANSR is CHARACTER*1
   53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   54: *>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          = 'U':  Upper triangle of RFP A is stored;
   61: *>          = 'L':  Lower triangle of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
   73: *>          On entry, the Hermitian matrix A in RFP format. RFP format is
   74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   77: *>          the Conjugate-transpose of RFP A as defined when
   78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   79: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
   81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   82: *>          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   83: *>          is odd. See the Note below for more details.
   84: *>
   85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   86: *>          factorization RFP A = U**H*U or RFP A = L*L**H.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] INFO
   90: *> \verbatim
   91: *>          INFO is INTEGER
   92: *>          = 0:  successful exit
   93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   94: *>          > 0:  if INFO = i, the leading minor of order i is not
   95: *>                positive definite, and the factorization could not be
   96: *>                completed.
   97: *>
   98: *>  Further Notes on RFP Format:
   99: *>  ============================
  100: *>
  101: *>  We first consider Standard Packed Format when N is even.
  102: *>  We give an example where N = 6.
  103: *>
  104: *>     AP is Upper             AP is Lower
  105: *>
  106: *>   00 01 02 03 04 05       00
  107: *>      11 12 13 14 15       10 11
  108: *>         22 23 24 25       20 21 22
  109: *>            33 34 35       30 31 32 33
  110: *>               44 45       40 41 42 43 44
  111: *>                  55       50 51 52 53 54 55
  112: *>
  113: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  114: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  115: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  116: *>  conjugate-transpose of the first three columns of AP upper.
  117: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  118: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  119: *>  conjugate-transpose of the last three columns of AP lower.
  120: *>  To denote conjugate we place -- above the element. This covers the
  121: *>  case N even and TRANSR = 'N'.
  122: *>
  123: *>         RFP A                   RFP A
  124: *>
  125: *>                                -- -- --
  126: *>        03 04 05                33 43 53
  127: *>                                   -- --
  128: *>        13 14 15                00 44 54
  129: *>                                      --
  130: *>        23 24 25                10 11 55
  131: *>
  132: *>        33 34 35                20 21 22
  133: *>        --
  134: *>        00 44 45                30 31 32
  135: *>        -- --
  136: *>        01 11 55                40 41 42
  137: *>        -- -- --
  138: *>        02 12 22                50 51 52
  139: *>
  140: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  141: *>  transpose of RFP A above. One therefore gets:
  142: *>
  143: *>           RFP A                   RFP A
  144: *>
  145: *>     -- -- -- --                -- -- -- -- -- --
  146: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  147: *>     -- -- -- -- --                -- -- -- -- --
  148: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  149: *>     -- -- -- -- -- --                -- -- -- --
  150: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  151: *>
  152: *>  We next  consider Standard Packed Format when N is odd.
  153: *>  We give an example where N = 5.
  154: *>
  155: *>     AP is Upper                 AP is Lower
  156: *>
  157: *>   00 01 02 03 04              00
  158: *>      11 12 13 14              10 11
  159: *>         22 23 24              20 21 22
  160: *>            33 34              30 31 32 33
  161: *>               44              40 41 42 43 44
  162: *>
  163: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  164: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  165: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  166: *>  conjugate-transpose of the first two   columns of AP upper.
  167: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  168: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  169: *>  conjugate-transpose of the last two   columns of AP lower.
  170: *>  To denote conjugate we place -- above the element. This covers the
  171: *>  case N odd  and TRANSR = 'N'.
  172: *>
  173: *>         RFP A                   RFP A
  174: *>
  175: *>                                   -- --
  176: *>        02 03 04                00 33 43
  177: *>                                      --
  178: *>        12 13 14                10 11 44
  179: *>
  180: *>        22 23 24                20 21 22
  181: *>        --
  182: *>        00 33 34                30 31 32
  183: *>        -- --
  184: *>        01 11 44                40 41 42
  185: *>
  186: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  187: *>  transpose of RFP A above. One therefore gets:
  188: *>
  189: *>           RFP A                   RFP A
  190: *>
  191: *>     -- -- --                   -- -- -- -- -- --
  192: *>     02 12 22 00 01             00 10 20 30 40 50
  193: *>     -- -- -- --                   -- -- -- -- --
  194: *>     03 13 23 33 11             33 11 21 31 41 51
  195: *>     -- -- -- -- --                   -- -- -- --
  196: *>     04 14 24 34 44             43 44 22 32 42 52
  197: *> \endverbatim
  198: *
  199: *  Authors:
  200: *  ========
  201: *
  202: *> \author Univ. of Tennessee
  203: *> \author Univ. of California Berkeley
  204: *> \author Univ. of Colorado Denver
  205: *> \author NAG Ltd.
  206: *
  207: *> \ingroup complex16OTHERcomputational
  208: *
  209: *  =====================================================================
  210:       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
  211: *
  212: *  -- LAPACK computational routine --
  213: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  214: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  215: *
  216: *     .. Scalar Arguments ..
  217:       CHARACTER          TRANSR, UPLO
  218:       INTEGER            N, INFO
  219: *     ..
  220: *     .. Array Arguments ..
  221:       COMPLEX*16         A( 0: * )
  222: *
  223: *  =====================================================================
  224: *
  225: *     .. Parameters ..
  226:       DOUBLE PRECISION   ONE
  227:       COMPLEX*16         CONE
  228:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ) )
  229: *     ..
  230: *     .. Local Scalars ..
  231:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  232:       INTEGER            N1, N2, K
  233: *     ..
  234: *     .. External Functions ..
  235:       LOGICAL            LSAME
  236:       EXTERNAL           LSAME
  237: *     ..
  238: *     .. External Subroutines ..
  239:       EXTERNAL           XERBLA, ZHERK, ZPOTRF, ZTRSM
  240: *     ..
  241: *     .. Intrinsic Functions ..
  242:       INTRINSIC          MOD
  243: *     ..
  244: *     .. Executable Statements ..
  245: *
  246: *     Test the input parameters.
  247: *
  248:       INFO = 0
  249:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  250:       LOWER = LSAME( UPLO, 'L' )
  251:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  252:          INFO = -1
  253:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  254:          INFO = -2
  255:       ELSE IF( N.LT.0 ) THEN
  256:          INFO = -3
  257:       END IF
  258:       IF( INFO.NE.0 ) THEN
  259:          CALL XERBLA( 'ZPFTRF', -INFO )
  260:          RETURN
  261:       END IF
  262: *
  263: *     Quick return if possible
  264: *
  265:       IF( N.EQ.0 )
  266:      $   RETURN
  267: *
  268: *     If N is odd, set NISODD = .TRUE.
  269: *     If N is even, set K = N/2 and NISODD = .FALSE.
  270: *
  271:       IF( MOD( N, 2 ).EQ.0 ) THEN
  272:          K = N / 2
  273:          NISODD = .FALSE.
  274:       ELSE
  275:          NISODD = .TRUE.
  276:       END IF
  277: *
  278: *     Set N1 and N2 depending on LOWER
  279: *
  280:       IF( LOWER ) THEN
  281:          N2 = N / 2
  282:          N1 = N - N2
  283:       ELSE
  284:          N1 = N / 2
  285:          N2 = N - N1
  286:       END IF
  287: *
  288: *     start execution: there are eight cases
  289: *
  290:       IF( NISODD ) THEN
  291: *
  292: *        N is odd
  293: *
  294:          IF( NORMALTRANSR ) THEN
  295: *
  296: *           N is odd and TRANSR = 'N'
  297: *
  298:             IF( LOWER ) THEN
  299: *
  300: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  301: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  302: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  303: *
  304:                CALL ZPOTRF( 'L', N1, A( 0 ), N, INFO )
  305:                IF( INFO.GT.0 )
  306:      $            RETURN
  307:                CALL ZTRSM( 'R', 'L', 'C', 'N', N2, N1, CONE, A( 0 ), N,
  308:      $                     A( N1 ), N )
  309:                CALL ZHERK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  310:      $                     A( N ), N )
  311:                CALL ZPOTRF( 'U', N2, A( N ), N, INFO )
  312:                IF( INFO.GT.0 )
  313:      $            INFO = INFO + N1
  314: *
  315:             ELSE
  316: *
  317: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  318: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  319: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  320: *
  321:                CALL ZPOTRF( 'L', N1, A( N2 ), N, INFO )
  322:                IF( INFO.GT.0 )
  323:      $            RETURN
  324:                CALL ZTRSM( 'L', 'L', 'N', 'N', N1, N2, CONE, A( N2 ), N,
  325:      $                     A( 0 ), N )
  326:                CALL ZHERK( 'U', 'C', N2, N1, -ONE, A( 0 ), N, ONE,
  327:      $                     A( N1 ), N )
  328:                CALL ZPOTRF( 'U', N2, A( N1 ), N, INFO )
  329:                IF( INFO.GT.0 )
  330:      $            INFO = INFO + N1
  331: *
  332:             END IF
  333: *
  334:          ELSE
  335: *
  336: *           N is odd and TRANSR = 'C'
  337: *
  338:             IF( LOWER ) THEN
  339: *
  340: *              SRPA for LOWER, TRANSPOSE and N is odd
  341: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  342: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  343: *
  344:                CALL ZPOTRF( 'U', N1, A( 0 ), N1, INFO )
  345:                IF( INFO.GT.0 )
  346:      $            RETURN
  347:                CALL ZTRSM( 'L', 'U', 'C', 'N', N1, N2, CONE, A( 0 ), N1,
  348:      $                     A( N1*N1 ), N1 )
  349:                CALL ZHERK( 'L', 'C', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  350:      $                     A( 1 ), N1 )
  351:                CALL ZPOTRF( 'L', N2, A( 1 ), N1, INFO )
  352:                IF( INFO.GT.0 )
  353:      $            INFO = INFO + N1
  354: *
  355:             ELSE
  356: *
  357: *              SRPA for UPPER, TRANSPOSE and N is odd
  358: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  359: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  360: *
  361:                CALL ZPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  362:                IF( INFO.GT.0 )
  363:      $            RETURN
  364:                CALL ZTRSM( 'R', 'U', 'N', 'N', N2, N1, CONE, A( N2*N2 ),
  365:      $                     N2, A( 0 ), N2 )
  366:                CALL ZHERK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  367:      $                     A( N1*N2 ), N2 )
  368:                CALL ZPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  369:                IF( INFO.GT.0 )
  370:      $            INFO = INFO + N1
  371: *
  372:             END IF
  373: *
  374:          END IF
  375: *
  376:       ELSE
  377: *
  378: *        N is even
  379: *
  380:          IF( NORMALTRANSR ) THEN
  381: *
  382: *           N is even and TRANSR = 'N'
  383: *
  384:             IF( LOWER ) THEN
  385: *
  386: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  387: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  388: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  389: *
  390:                CALL ZPOTRF( 'L', K, A( 1 ), N+1, INFO )
  391:                IF( INFO.GT.0 )
  392:      $            RETURN
  393:                CALL ZTRSM( 'R', 'L', 'C', 'N', K, K, CONE, A( 1 ), N+1,
  394:      $                     A( K+1 ), N+1 )
  395:                CALL ZHERK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  396:      $                     A( 0 ), N+1 )
  397:                CALL ZPOTRF( 'U', K, A( 0 ), N+1, INFO )
  398:                IF( INFO.GT.0 )
  399:      $            INFO = INFO + K
  400: *
  401:             ELSE
  402: *
  403: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  404: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  405: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  406: *
  407:                CALL ZPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  408:                IF( INFO.GT.0 )
  409:      $            RETURN
  410:                CALL ZTRSM( 'L', 'L', 'N', 'N', K, K, CONE, A( K+1 ),
  411:      $                     N+1, A( 0 ), N+1 )
  412:                CALL ZHERK( 'U', 'C', K, K, -ONE, A( 0 ), N+1, ONE,
  413:      $                     A( K ), N+1 )
  414:                CALL ZPOTRF( 'U', K, A( K ), N+1, INFO )
  415:                IF( INFO.GT.0 )
  416:      $            INFO = INFO + K
  417: *
  418:             END IF
  419: *
  420:          ELSE
  421: *
  422: *           N is even and TRANSR = 'C'
  423: *
  424:             IF( LOWER ) THEN
  425: *
  426: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  427: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  428: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  429: *
  430:                CALL ZPOTRF( 'U', K, A( 0+K ), K, INFO )
  431:                IF( INFO.GT.0 )
  432:      $            RETURN
  433:                CALL ZTRSM( 'L', 'U', 'C', 'N', K, K, CONE, A( K ), N1,
  434:      $                     A( K*( K+1 ) ), K )
  435:                CALL ZHERK( 'L', 'C', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  436:      $                     A( 0 ), K )
  437:                CALL ZPOTRF( 'L', K, A( 0 ), K, INFO )
  438:                IF( INFO.GT.0 )
  439:      $            INFO = INFO + K
  440: *
  441:             ELSE
  442: *
  443: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  444: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  445: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  446: *
  447:                CALL ZPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  448:                IF( INFO.GT.0 )
  449:      $            RETURN
  450:                CALL ZTRSM( 'R', 'U', 'N', 'N', K, K, CONE,
  451:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  452:                CALL ZHERK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  453:      $                     A( K*K ), K )
  454:                CALL ZPOTRF( 'L', K, A( K*K ), K, INFO )
  455:                IF( INFO.GT.0 )
  456:      $            INFO = INFO + K
  457: *
  458:             END IF
  459: *
  460:          END IF
  461: *
  462:       END IF
  463: *
  464:       RETURN
  465: *
  466: *     End of ZPFTRF
  467: *
  468:       END

CVSweb interface <joel.bertrand@systella.fr>