File:  [local] / rpl / lapack / lapack / zpftrf.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:18 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZPFTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPFTRF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftrf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftrf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftrf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            N, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( 0: * )
   29: *  
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZPFTRF computes the Cholesky factorization of a complex Hermitian
   37: *> positive definite matrix A.
   38: *>
   39: *> The factorization has the form
   40: *>    A = U**H * U,  if UPLO = 'U', or
   41: *>    A = L  * L**H,  if UPLO = 'L',
   42: *> where U is an upper triangular matrix and L is lower triangular.
   43: *>
   44: *> This is the block version of the algorithm, calling Level 3 BLAS.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] TRANSR
   51: *> \verbatim
   52: *>          TRANSR is CHARACTER*1
   53: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   54: *>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] UPLO
   58: *> \verbatim
   59: *>          UPLO is CHARACTER*1
   60: *>          = 'U':  Upper triangle of RFP A is stored;
   61: *>          = 'L':  Lower triangle of RFP A is stored.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>          The order of the matrix A.  N >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] A
   71: *> \verbatim
   72: *>          A is COMPLEX array, dimension ( N*(N+1)/2 );
   73: *>          On entry, the Hermitian matrix A in RFP format. RFP format is
   74: *>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   75: *>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   76: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   77: *>          the Conjugate-transpose of RFP A as defined when
   78: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   79: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   80: *>          upper packed A. If UPLO = 'L' the RFP A contains the elements
   81: *>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   82: *>          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   83: *>          is odd. See the Note below for more details.
   84: *>
   85: *>          On exit, if INFO = 0, the factor U or L from the Cholesky
   86: *>          factorization RFP A = U**H*U or RFP A = L*L**H.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] INFO
   90: *> \verbatim
   91: *>          INFO is INTEGER
   92: *>          = 0:  successful exit
   93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   94: *>          > 0:  if INFO = i, the leading minor of order i is not
   95: *>                positive definite, and the factorization could not be
   96: *>                completed.
   97: *>
   98: *>  Further Notes on RFP Format:
   99: *>  ============================
  100: *>
  101: *>  We first consider Standard Packed Format when N is even.
  102: *>  We give an example where N = 6.
  103: *>
  104: *>     AP is Upper             AP is Lower
  105: *>
  106: *>   00 01 02 03 04 05       00
  107: *>      11 12 13 14 15       10 11
  108: *>         22 23 24 25       20 21 22
  109: *>            33 34 35       30 31 32 33
  110: *>               44 45       40 41 42 43 44
  111: *>                  55       50 51 52 53 54 55
  112: *>
  113: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  114: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  115: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  116: *>  conjugate-transpose of the first three columns of AP upper.
  117: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  118: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  119: *>  conjugate-transpose of the last three columns of AP lower.
  120: *>  To denote conjugate we place -- above the element. This covers the
  121: *>  case N even and TRANSR = 'N'.
  122: *>
  123: *>         RFP A                   RFP A
  124: *>
  125: *>                                -- -- --
  126: *>        03 04 05                33 43 53
  127: *>                                   -- --
  128: *>        13 14 15                00 44 54
  129: *>                                      --
  130: *>        23 24 25                10 11 55
  131: *>
  132: *>        33 34 35                20 21 22
  133: *>        --
  134: *>        00 44 45                30 31 32
  135: *>        -- --
  136: *>        01 11 55                40 41 42
  137: *>        -- -- --
  138: *>        02 12 22                50 51 52
  139: *>
  140: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  141: *>  transpose of RFP A above. One therefore gets:
  142: *>
  143: *>           RFP A                   RFP A
  144: *>
  145: *>     -- -- -- --                -- -- -- -- -- --
  146: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  147: *>     -- -- -- -- --                -- -- -- -- --
  148: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  149: *>     -- -- -- -- -- --                -- -- -- --
  150: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  151: *>
  152: *>  We next  consider Standard Packed Format when N is odd.
  153: *>  We give an example where N = 5.
  154: *>
  155: *>     AP is Upper                 AP is Lower
  156: *>
  157: *>   00 01 02 03 04              00
  158: *>      11 12 13 14              10 11
  159: *>         22 23 24              20 21 22
  160: *>            33 34              30 31 32 33
  161: *>               44              40 41 42 43 44
  162: *>
  163: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  164: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  165: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  166: *>  conjugate-transpose of the first two   columns of AP upper.
  167: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  168: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  169: *>  conjugate-transpose of the last two   columns of AP lower.
  170: *>  To denote conjugate we place -- above the element. This covers the
  171: *>  case N odd  and TRANSR = 'N'.
  172: *>
  173: *>         RFP A                   RFP A
  174: *>
  175: *>                                   -- --
  176: *>        02 03 04                00 33 43
  177: *>                                      --
  178: *>        12 13 14                10 11 44
  179: *>
  180: *>        22 23 24                20 21 22
  181: *>        --
  182: *>        00 33 34                30 31 32
  183: *>        -- --
  184: *>        01 11 44                40 41 42
  185: *>
  186: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  187: *>  transpose of RFP A above. One therefore gets:
  188: *>
  189: *>           RFP A                   RFP A
  190: *>
  191: *>     -- -- --                   -- -- -- -- -- --
  192: *>     02 12 22 00 01             00 10 20 30 40 50
  193: *>     -- -- -- --                   -- -- -- -- --
  194: *>     03 13 23 33 11             33 11 21 31 41 51
  195: *>     -- -- -- -- --                   -- -- -- --
  196: *>     04 14 24 34 44             43 44 22 32 42 52
  197: *> \endverbatim
  198: *
  199: *  Authors:
  200: *  ========
  201: *
  202: *> \author Univ. of Tennessee 
  203: *> \author Univ. of California Berkeley 
  204: *> \author Univ. of Colorado Denver 
  205: *> \author NAG Ltd. 
  206: *
  207: *> \date November 2011
  208: *
  209: *> \ingroup complex16OTHERcomputational
  210: *
  211: *  =====================================================================
  212:       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
  213: *
  214: *  -- LAPACK computational routine (version 3.4.0) --
  215: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  216: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  217: *     November 2011
  218: *
  219: *     .. Scalar Arguments ..
  220:       CHARACTER          TRANSR, UPLO
  221:       INTEGER            N, INFO
  222: *     ..
  223: *     .. Array Arguments ..
  224:       COMPLEX*16         A( 0: * )
  225: *
  226: *  =====================================================================
  227: *
  228: *     .. Parameters ..
  229:       DOUBLE PRECISION   ONE
  230:       COMPLEX*16         CONE
  231:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ) )
  232: *     ..
  233: *     .. Local Scalars ..
  234:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  235:       INTEGER            N1, N2, K
  236: *     ..
  237: *     .. External Functions ..
  238:       LOGICAL            LSAME
  239:       EXTERNAL           LSAME
  240: *     ..
  241: *     .. External Subroutines ..
  242:       EXTERNAL           XERBLA, ZHERK, ZPOTRF, ZTRSM
  243: *     ..
  244: *     .. Intrinsic Functions ..
  245:       INTRINSIC          MOD
  246: *     ..
  247: *     .. Executable Statements ..
  248: *
  249: *     Test the input parameters.
  250: *
  251:       INFO = 0
  252:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  253:       LOWER = LSAME( UPLO, 'L' )
  254:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  255:          INFO = -1
  256:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  257:          INFO = -2
  258:       ELSE IF( N.LT.0 ) THEN
  259:          INFO = -3
  260:       END IF
  261:       IF( INFO.NE.0 ) THEN
  262:          CALL XERBLA( 'ZPFTRF', -INFO )
  263:          RETURN
  264:       END IF
  265: *
  266: *     Quick return if possible
  267: *
  268:       IF( N.EQ.0 )
  269:      $   RETURN
  270: *
  271: *     If N is odd, set NISODD = .TRUE.
  272: *     If N is even, set K = N/2 and NISODD = .FALSE.
  273: *
  274:       IF( MOD( N, 2 ).EQ.0 ) THEN
  275:          K = N / 2
  276:          NISODD = .FALSE.
  277:       ELSE
  278:          NISODD = .TRUE.
  279:       END IF
  280: *
  281: *     Set N1 and N2 depending on LOWER
  282: *
  283:       IF( LOWER ) THEN
  284:          N2 = N / 2
  285:          N1 = N - N2
  286:       ELSE
  287:          N1 = N / 2
  288:          N2 = N - N1
  289:       END IF
  290: *
  291: *     start execution: there are eight cases
  292: *
  293:       IF( NISODD ) THEN
  294: *
  295: *        N is odd
  296: *
  297:          IF( NORMALTRANSR ) THEN
  298: *
  299: *           N is odd and TRANSR = 'N'
  300: *
  301:             IF( LOWER ) THEN
  302: *
  303: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  304: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  305: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  306: *
  307:                CALL ZPOTRF( 'L', N1, A( 0 ), N, INFO )
  308:                IF( INFO.GT.0 )
  309:      $            RETURN
  310:                CALL ZTRSM( 'R', 'L', 'C', 'N', N2, N1, CONE, A( 0 ), N,
  311:      $                     A( N1 ), N )
  312:                CALL ZHERK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  313:      $                     A( N ), N )
  314:                CALL ZPOTRF( 'U', N2, A( N ), N, INFO )
  315:                IF( INFO.GT.0 )
  316:      $            INFO = INFO + N1
  317: *
  318:             ELSE
  319: *
  320: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  321: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  322: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  323: *
  324:                CALL ZPOTRF( 'L', N1, A( N2 ), N, INFO )
  325:                IF( INFO.GT.0 )
  326:      $            RETURN
  327:                CALL ZTRSM( 'L', 'L', 'N', 'N', N1, N2, CONE, A( N2 ), N,
  328:      $                     A( 0 ), N )
  329:                CALL ZHERK( 'U', 'C', N2, N1, -ONE, A( 0 ), N, ONE,
  330:      $                     A( N1 ), N )
  331:                CALL ZPOTRF( 'U', N2, A( N1 ), N, INFO )
  332:                IF( INFO.GT.0 )
  333:      $            INFO = INFO + N1
  334: *
  335:             END IF
  336: *
  337:          ELSE
  338: *
  339: *           N is odd and TRANSR = 'C'
  340: *
  341:             IF( LOWER ) THEN
  342: *
  343: *              SRPA for LOWER, TRANSPOSE and N is odd
  344: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  345: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  346: *
  347:                CALL ZPOTRF( 'U', N1, A( 0 ), N1, INFO )
  348:                IF( INFO.GT.0 )
  349:      $            RETURN
  350:                CALL ZTRSM( 'L', 'U', 'C', 'N', N1, N2, CONE, A( 0 ), N1,
  351:      $                     A( N1*N1 ), N1 )
  352:                CALL ZHERK( 'L', 'C', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  353:      $                     A( 1 ), N1 )
  354:                CALL ZPOTRF( 'L', N2, A( 1 ), N1, INFO )
  355:                IF( INFO.GT.0 )
  356:      $            INFO = INFO + N1
  357: *
  358:             ELSE
  359: *
  360: *              SRPA for UPPER, TRANSPOSE and N is odd
  361: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  362: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  363: *
  364:                CALL ZPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  365:                IF( INFO.GT.0 )
  366:      $            RETURN
  367:                CALL ZTRSM( 'R', 'U', 'N', 'N', N2, N1, CONE, A( N2*N2 ),
  368:      $                     N2, A( 0 ), N2 )
  369:                CALL ZHERK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  370:      $                     A( N1*N2 ), N2 )
  371:                CALL ZPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  372:                IF( INFO.GT.0 )
  373:      $            INFO = INFO + N1
  374: *
  375:             END IF
  376: *
  377:          END IF
  378: *
  379:       ELSE
  380: *
  381: *        N is even
  382: *
  383:          IF( NORMALTRANSR ) THEN
  384: *
  385: *           N is even and TRANSR = 'N'
  386: *
  387:             IF( LOWER ) THEN
  388: *
  389: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  390: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  391: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  392: *
  393:                CALL ZPOTRF( 'L', K, A( 1 ), N+1, INFO )
  394:                IF( INFO.GT.0 )
  395:      $            RETURN
  396:                CALL ZTRSM( 'R', 'L', 'C', 'N', K, K, CONE, A( 1 ), N+1,
  397:      $                     A( K+1 ), N+1 )
  398:                CALL ZHERK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  399:      $                     A( 0 ), N+1 )
  400:                CALL ZPOTRF( 'U', K, A( 0 ), N+1, INFO )
  401:                IF( INFO.GT.0 )
  402:      $            INFO = INFO + K
  403: *
  404:             ELSE
  405: *
  406: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  407: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  408: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  409: *
  410:                CALL ZPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  411:                IF( INFO.GT.0 )
  412:      $            RETURN
  413:                CALL ZTRSM( 'L', 'L', 'N', 'N', K, K, CONE, A( K+1 ),
  414:      $                     N+1, A( 0 ), N+1 )
  415:                CALL ZHERK( 'U', 'C', K, K, -ONE, A( 0 ), N+1, ONE,
  416:      $                     A( K ), N+1 )
  417:                CALL ZPOTRF( 'U', K, A( K ), N+1, INFO )
  418:                IF( INFO.GT.0 )
  419:      $            INFO = INFO + K
  420: *
  421:             END IF
  422: *
  423:          ELSE
  424: *
  425: *           N is even and TRANSR = 'C'
  426: *
  427:             IF( LOWER ) THEN
  428: *
  429: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  430: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  431: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  432: *
  433:                CALL ZPOTRF( 'U', K, A( 0+K ), K, INFO )
  434:                IF( INFO.GT.0 )
  435:      $            RETURN
  436:                CALL ZTRSM( 'L', 'U', 'C', 'N', K, K, CONE, A( K ), N1,
  437:      $                     A( K*( K+1 ) ), K )
  438:                CALL ZHERK( 'L', 'C', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  439:      $                     A( 0 ), K )
  440:                CALL ZPOTRF( 'L', K, A( 0 ), K, INFO )
  441:                IF( INFO.GT.0 )
  442:      $            INFO = INFO + K
  443: *
  444:             ELSE
  445: *
  446: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  447: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  448: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  449: *
  450:                CALL ZPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  451:                IF( INFO.GT.0 )
  452:      $            RETURN
  453:                CALL ZTRSM( 'R', 'U', 'N', 'N', K, K, CONE,
  454:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  455:                CALL ZHERK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  456:      $                     A( K*K ), K )
  457:                CALL ZPOTRF( 'L', K, A( K*K ), K, INFO )
  458:                IF( INFO.GT.0 )
  459:      $            INFO = INFO + K
  460: *
  461:             END IF
  462: *
  463:          END IF
  464: *
  465:       END IF
  466: *
  467:       RETURN
  468: *
  469: *     End of ZPFTRF
  470: *
  471:       END

CVSweb interface <joel.bertrand@systella.fr>