File:  [local] / rpl / lapack / lapack / zpftrf.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:10 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- November 2008                                                   --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     ..
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANSR, UPLO
   14:       INTEGER            N, INFO
   15: *     ..
   16: *     .. Array Arguments ..
   17:       COMPLEX*16         A( 0: * )
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZPFTRF computes the Cholesky factorization of a complex Hermitian
   23: *  positive definite matrix A.
   24: *
   25: *  The factorization has the form
   26: *     A = U**H * U,  if UPLO = 'U', or
   27: *     A = L  * L**H,  if UPLO = 'L',
   28: *  where U is an upper triangular matrix and L is lower triangular.
   29: *
   30: *  This is the block version of the algorithm, calling Level 3 BLAS.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  TRANSR    (input) CHARACTER
   36: *          = 'N':  The Normal TRANSR of RFP A is stored;
   37: *          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   38: *
   39: *  UPLO    (input) CHARACTER
   40: *          = 'U':  Upper triangle of RFP A is stored;
   41: *          = 'L':  Lower triangle of RFP A is stored.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrix A.  N >= 0.
   45: *
   46: *  A       (input/output) COMPLEX array, dimension ( N*(N+1)/2 );
   47: *          On entry, the Hermitian matrix A in RFP format. RFP format is
   48: *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
   49: *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   50: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   51: *          the Conjugate-transpose of RFP A as defined when
   52: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   53: *          follows: If UPLO = 'U' the RFP A contains the nt elements of
   54: *          upper packed A. If UPLO = 'L' the RFP A contains the elements
   55: *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
   56: *          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
   57: *          is odd. See the Note below for more details.
   58: *
   59: *          On exit, if INFO = 0, the factor U or L from the Cholesky
   60: *          factorization RFP A = U**H*U or RFP A = L*L**H.
   61: *
   62: *  INFO    (output) INTEGER
   63: *          = 0:  successful exit
   64: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   65: *          > 0:  if INFO = i, the leading minor of order i is not
   66: *                positive definite, and the factorization could not be
   67: *                completed.
   68: *
   69: *  Further Notes on RFP Format:
   70: *  ============================
   71: *
   72: *  We first consider Standard Packed Format when N is even.
   73: *  We give an example where N = 6.
   74: *
   75: *     AP is Upper             AP is Lower
   76: *
   77: *   00 01 02 03 04 05       00
   78: *      11 12 13 14 15       10 11
   79: *         22 23 24 25       20 21 22
   80: *            33 34 35       30 31 32 33
   81: *               44 45       40 41 42 43 44
   82: *                  55       50 51 52 53 54 55
   83: *
   84: *
   85: *  Let TRANSR = 'N'. RFP holds AP as follows:
   86: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   87: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   88: *  conjugate-transpose of the first three columns of AP upper.
   89: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   90: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   91: *  conjugate-transpose of the last three columns of AP lower.
   92: *  To denote conjugate we place -- above the element. This covers the
   93: *  case N even and TRANSR = 'N'.
   94: *
   95: *         RFP A                   RFP A
   96: *
   97: *                                -- -- --
   98: *        03 04 05                33 43 53
   99: *                                   -- --
  100: *        13 14 15                00 44 54
  101: *                                      --
  102: *        23 24 25                10 11 55
  103: *
  104: *        33 34 35                20 21 22
  105: *        --
  106: *        00 44 45                30 31 32
  107: *        -- --
  108: *        01 11 55                40 41 42
  109: *        -- -- --
  110: *        02 12 22                50 51 52
  111: *
  112: *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  113: *  transpose of RFP A above. One therefore gets:
  114: *
  115: *
  116: *           RFP A                   RFP A
  117: *
  118: *     -- -- -- --                -- -- -- -- -- --
  119: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  120: *     -- -- -- -- --                -- -- -- -- --
  121: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  122: *     -- -- -- -- -- --                -- -- -- --
  123: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  124: *
  125: *
  126: *  We next  consider Standard Packed Format when N is odd.
  127: *  We give an example where N = 5.
  128: *
  129: *     AP is Upper                 AP is Lower
  130: *
  131: *   00 01 02 03 04              00
  132: *      11 12 13 14              10 11
  133: *         22 23 24              20 21 22
  134: *            33 34              30 31 32 33
  135: *               44              40 41 42 43 44
  136: *
  137: *
  138: *  Let TRANSR = 'N'. RFP holds AP as follows:
  139: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  140: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  141: *  conjugate-transpose of the first two   columns of AP upper.
  142: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  143: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  144: *  conjugate-transpose of the last two   columns of AP lower.
  145: *  To denote conjugate we place -- above the element. This covers the
  146: *  case N odd  and TRANSR = 'N'.
  147: *
  148: *         RFP A                   RFP A
  149: *
  150: *                                   -- --
  151: *        02 03 04                00 33 43
  152: *                                      --
  153: *        12 13 14                10 11 44
  154: *
  155: *        22 23 24                20 21 22
  156: *        --
  157: *        00 33 34                30 31 32
  158: *        -- --
  159: *        01 11 44                40 41 42
  160: *
  161: *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  162: *  transpose of RFP A above. One therefore gets:
  163: *
  164: *
  165: *           RFP A                   RFP A
  166: *
  167: *     -- -- --                   -- -- -- -- -- --
  168: *     02 12 22 00 01             00 10 20 30 40 50
  169: *     -- -- -- --                   -- -- -- -- --
  170: *     03 13 23 33 11             33 11 21 31 41 51
  171: *     -- -- -- -- --                   -- -- -- --
  172: *     04 14 24 34 44             43 44 22 32 42 52
  173: *
  174: *  =====================================================================
  175: *
  176: *     .. Parameters ..
  177:       DOUBLE PRECISION   ONE
  178:       COMPLEX*16         CONE
  179:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ) )
  180: *     ..
  181: *     .. Local Scalars ..
  182:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  183:       INTEGER            N1, N2, K
  184: *     ..
  185: *     .. External Functions ..
  186:       LOGICAL            LSAME
  187:       EXTERNAL           LSAME
  188: *     ..
  189: *     .. External Subroutines ..
  190:       EXTERNAL           XERBLA, ZHERK, ZPOTRF, ZTRSM
  191: *     ..
  192: *     .. Intrinsic Functions ..
  193:       INTRINSIC          MOD
  194: *     ..
  195: *     .. Executable Statements ..
  196: *
  197: *     Test the input parameters.
  198: *
  199:       INFO = 0
  200:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  201:       LOWER = LSAME( UPLO, 'L' )
  202:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  203:          INFO = -1
  204:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  205:          INFO = -2
  206:       ELSE IF( N.LT.0 ) THEN
  207:          INFO = -3
  208:       END IF
  209:       IF( INFO.NE.0 ) THEN
  210:          CALL XERBLA( 'ZPFTRF', -INFO )
  211:          RETURN
  212:       END IF
  213: *
  214: *     Quick return if possible
  215: *
  216:       IF( N.EQ.0 )
  217:      +   RETURN
  218: *
  219: *     If N is odd, set NISODD = .TRUE.
  220: *     If N is even, set K = N/2 and NISODD = .FALSE.
  221: *
  222:       IF( MOD( N, 2 ).EQ.0 ) THEN
  223:          K = N / 2
  224:          NISODD = .FALSE.
  225:       ELSE
  226:          NISODD = .TRUE.
  227:       END IF
  228: *
  229: *     Set N1 and N2 depending on LOWER
  230: *
  231:       IF( LOWER ) THEN
  232:          N2 = N / 2
  233:          N1 = N - N2
  234:       ELSE
  235:          N1 = N / 2
  236:          N2 = N - N1
  237:       END IF
  238: *
  239: *     start execution: there are eight cases
  240: *
  241:       IF( NISODD ) THEN
  242: *
  243: *        N is odd
  244: *
  245:          IF( NORMALTRANSR ) THEN
  246: *
  247: *           N is odd and TRANSR = 'N'
  248: *
  249:             IF( LOWER ) THEN
  250: *
  251: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  252: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  253: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  254: *
  255:                CALL ZPOTRF( 'L', N1, A( 0 ), N, INFO )
  256:                IF( INFO.GT.0 )
  257:      +            RETURN
  258:                CALL ZTRSM( 'R', 'L', 'C', 'N', N2, N1, CONE, A( 0 ), N,
  259:      +                     A( N1 ), N )
  260:                CALL ZHERK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
  261:      +                     A( N ), N )
  262:                CALL ZPOTRF( 'U', N2, A( N ), N, INFO )
  263:                IF( INFO.GT.0 )
  264:      +            INFO = INFO + N1
  265: *
  266:             ELSE
  267: *
  268: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  269: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  270: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  271: *
  272:                CALL ZPOTRF( 'L', N1, A( N2 ), N, INFO )
  273:                IF( INFO.GT.0 )
  274:      +            RETURN
  275:                CALL ZTRSM( 'L', 'L', 'N', 'N', N1, N2, CONE, A( N2 ), N,
  276:      +                     A( 0 ), N )
  277:                CALL ZHERK( 'U', 'C', N2, N1, -ONE, A( 0 ), N, ONE,
  278:      +                     A( N1 ), N )
  279:                CALL ZPOTRF( 'U', N2, A( N1 ), N, INFO )
  280:                IF( INFO.GT.0 )
  281:      +            INFO = INFO + N1
  282: *
  283:             END IF
  284: *
  285:          ELSE
  286: *
  287: *           N is odd and TRANSR = 'C'
  288: *
  289:             IF( LOWER ) THEN
  290: *
  291: *              SRPA for LOWER, TRANSPOSE and N is odd
  292: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  293: *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
  294: *
  295:                CALL ZPOTRF( 'U', N1, A( 0 ), N1, INFO )
  296:                IF( INFO.GT.0 )
  297:      +            RETURN
  298:                CALL ZTRSM( 'L', 'U', 'C', 'N', N1, N2, CONE, A( 0 ), N1,
  299:      +                     A( N1*N1 ), N1 )
  300:                CALL ZHERK( 'L', 'C', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
  301:      +                     A( 1 ), N1 )
  302:                CALL ZPOTRF( 'L', N2, A( 1 ), N1, INFO )
  303:                IF( INFO.GT.0 )
  304:      +            INFO = INFO + N1
  305: *
  306:             ELSE
  307: *
  308: *              SRPA for UPPER, TRANSPOSE and N is odd
  309: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  310: *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
  311: *
  312:                CALL ZPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
  313:                IF( INFO.GT.0 )
  314:      +            RETURN
  315:                CALL ZTRSM( 'R', 'U', 'N', 'N', N2, N1, CONE, A( N2*N2 ),
  316:      +                     N2, A( 0 ), N2 )
  317:                CALL ZHERK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
  318:      +                     A( N1*N2 ), N2 )
  319:                CALL ZPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
  320:                IF( INFO.GT.0 )
  321:      +            INFO = INFO + N1
  322: *
  323:             END IF
  324: *
  325:          END IF
  326: *
  327:       ELSE
  328: *
  329: *        N is even
  330: *
  331:          IF( NORMALTRANSR ) THEN
  332: *
  333: *           N is even and TRANSR = 'N'
  334: *
  335:             IF( LOWER ) THEN
  336: *
  337: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  338: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  339: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  340: *
  341:                CALL ZPOTRF( 'L', K, A( 1 ), N+1, INFO )
  342:                IF( INFO.GT.0 )
  343:      +            RETURN
  344:                CALL ZTRSM( 'R', 'L', 'C', 'N', K, K, CONE, A( 1 ), N+1,
  345:      +                     A( K+1 ), N+1 )
  346:                CALL ZHERK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
  347:      +                     A( 0 ), N+1 )
  348:                CALL ZPOTRF( 'U', K, A( 0 ), N+1, INFO )
  349:                IF( INFO.GT.0 )
  350:      +            INFO = INFO + K
  351: *
  352:             ELSE
  353: *
  354: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  355: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  356: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  357: *
  358:                CALL ZPOTRF( 'L', K, A( K+1 ), N+1, INFO )
  359:                IF( INFO.GT.0 )
  360:      +            RETURN
  361:                CALL ZTRSM( 'L', 'L', 'N', 'N', K, K, CONE, A( K+1 ),
  362:      +                     N+1, A( 0 ), N+1 )
  363:                CALL ZHERK( 'U', 'C', K, K, -ONE, A( 0 ), N+1, ONE,
  364:      +                     A( K ), N+1 )
  365:                CALL ZPOTRF( 'U', K, A( K ), N+1, INFO )
  366:                IF( INFO.GT.0 )
  367:      +            INFO = INFO + K
  368: *
  369:             END IF
  370: *
  371:          ELSE
  372: *
  373: *           N is even and TRANSR = 'C'
  374: *
  375:             IF( LOWER ) THEN
  376: *
  377: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  378: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  379: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  380: *
  381:                CALL ZPOTRF( 'U', K, A( 0+K ), K, INFO )
  382:                IF( INFO.GT.0 )
  383:      +            RETURN
  384:                CALL ZTRSM( 'L', 'U', 'C', 'N', K, K, CONE, A( K ), N1,
  385:      +                     A( K*( K+1 ) ), K )
  386:                CALL ZHERK( 'L', 'C', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
  387:      +                     A( 0 ), K )
  388:                CALL ZPOTRF( 'L', K, A( 0 ), K, INFO )
  389:                IF( INFO.GT.0 )
  390:      +            INFO = INFO + K
  391: *
  392:             ELSE
  393: *
  394: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  395: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  396: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  397: *
  398:                CALL ZPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
  399:                IF( INFO.GT.0 )
  400:      +            RETURN
  401:                CALL ZTRSM( 'R', 'U', 'N', 'N', K, K, CONE,
  402:      +                     A( K*( K+1 ) ), K, A( 0 ), K )
  403:                CALL ZHERK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
  404:      +                     A( K*K ), K )
  405:                CALL ZPOTRF( 'L', K, A( K*K ), K, INFO )
  406:                IF( INFO.GT.0 )
  407:      +            INFO = INFO + K
  408: *
  409:             END IF
  410: *
  411:          END IF
  412: *
  413:       END IF
  414: *
  415:       RETURN
  416: *
  417: *     End of ZPFTRF
  418: *
  419:       END

CVSweb interface <joel.bertrand@systella.fr>