Annotation of rpl/lapack/lapack/zpbtf2.f, revision 1.14

1.12      bertrand    1: *> \brief \b ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZPBTF2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtf2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtf2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtf2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KD, LDAB, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16         AB( LDAB, * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZPBTF2 computes the Cholesky factorization of a complex Hermitian
                     38: *> positive definite band matrix A.
                     39: *>
                     40: *> The factorization has the form
                     41: *>    A = U**H * U ,  if UPLO = 'U', or
                     42: *>    A = L  * L**H,  if UPLO = 'L',
                     43: *> where U is an upper triangular matrix, U**H is the conjugate transpose
                     44: *> of U, and L is lower triangular.
                     45: *>
                     46: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] UPLO
                     53: *> \verbatim
                     54: *>          UPLO is CHARACTER*1
                     55: *>          Specifies whether the upper or lower triangular part of the
                     56: *>          Hermitian matrix A is stored:
                     57: *>          = 'U':  Upper triangular
                     58: *>          = 'L':  Lower triangular
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] KD
                     68: *> \verbatim
                     69: *>          KD is INTEGER
                     70: *>          The number of super-diagonals of the matrix A if UPLO = 'U',
                     71: *>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] AB
                     75: *> \verbatim
                     76: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
                     77: *>          On entry, the upper or lower triangle of the Hermitian band
                     78: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     79: *>          j-th column of A is stored in the j-th column of the array AB
                     80: *>          as follows:
                     81: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     82: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     83: *>
                     84: *>          On exit, if INFO = 0, the triangular factor U or L from the
                     85: *>          Cholesky factorization A = U**H *U or A = L*L**H of the band
                     86: *>          matrix A, in the same storage format as A.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] LDAB
                     90: *> \verbatim
                     91: *>          LDAB is INTEGER
                     92: *>          The leading dimension of the array AB.  LDAB >= KD+1.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[out] INFO
                     96: *> \verbatim
                     97: *>          INFO is INTEGER
                     98: *>          = 0: successful exit
                     99: *>          < 0: if INFO = -k, the k-th argument had an illegal value
                    100: *>          > 0: if INFO = k, the leading minor of order k is not
                    101: *>               positive definite, and the factorization could not be
                    102: *>               completed.
                    103: *> \endverbatim
                    104: *
                    105: *  Authors:
                    106: *  ========
                    107: *
                    108: *> \author Univ. of Tennessee 
                    109: *> \author Univ. of California Berkeley 
                    110: *> \author Univ. of Colorado Denver 
                    111: *> \author NAG Ltd. 
                    112: *
1.12      bertrand  113: *> \date September 2012
1.9       bertrand  114: *
                    115: *> \ingroup complex16OTHERcomputational
                    116: *
                    117: *> \par Further Details:
                    118: *  =====================
                    119: *>
                    120: *> \verbatim
                    121: *>
                    122: *>  The band storage scheme is illustrated by the following example, when
                    123: *>  N = 6, KD = 2, and UPLO = 'U':
                    124: *>
                    125: *>  On entry:                       On exit:
                    126: *>
                    127: *>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
                    128: *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
                    129: *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
                    130: *>
                    131: *>  Similarly, if UPLO = 'L' the format of A is as follows:
                    132: *>
                    133: *>  On entry:                       On exit:
                    134: *>
                    135: *>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
                    136: *>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
                    137: *>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
                    138: *>
                    139: *>  Array elements marked * are not used by the routine.
                    140: *> \endverbatim
                    141: *>
                    142: *  =====================================================================
1.1       bertrand  143:       SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
                    144: *
1.12      bertrand  145: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  148: *     September 2012
1.1       bertrand  149: *
                    150: *     .. Scalar Arguments ..
                    151:       CHARACTER          UPLO
                    152:       INTEGER            INFO, KD, LDAB, N
                    153: *     ..
                    154: *     .. Array Arguments ..
                    155:       COMPLEX*16         AB( LDAB, * )
                    156: *     ..
                    157: *
                    158: *  =====================================================================
                    159: *
                    160: *     .. Parameters ..
                    161:       DOUBLE PRECISION   ONE, ZERO
                    162:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    163: *     ..
                    164: *     .. Local Scalars ..
                    165:       LOGICAL            UPPER
                    166:       INTEGER            J, KLD, KN
                    167:       DOUBLE PRECISION   AJJ
                    168: *     ..
                    169: *     .. External Functions ..
                    170:       LOGICAL            LSAME
                    171:       EXTERNAL           LSAME
                    172: *     ..
                    173: *     .. External Subroutines ..
                    174:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
                    175: *     ..
                    176: *     .. Intrinsic Functions ..
                    177:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    178: *     ..
                    179: *     .. Executable Statements ..
                    180: *
                    181: *     Test the input parameters.
                    182: *
                    183:       INFO = 0
                    184:       UPPER = LSAME( UPLO, 'U' )
                    185:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    186:          INFO = -1
                    187:       ELSE IF( N.LT.0 ) THEN
                    188:          INFO = -2
                    189:       ELSE IF( KD.LT.0 ) THEN
                    190:          INFO = -3
                    191:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    192:          INFO = -5
                    193:       END IF
                    194:       IF( INFO.NE.0 ) THEN
                    195:          CALL XERBLA( 'ZPBTF2', -INFO )
                    196:          RETURN
                    197:       END IF
                    198: *
                    199: *     Quick return if possible
                    200: *
                    201:       IF( N.EQ.0 )
                    202:      $   RETURN
                    203: *
                    204:       KLD = MAX( 1, LDAB-1 )
                    205: *
                    206:       IF( UPPER ) THEN
                    207: *
1.8       bertrand  208: *        Compute the Cholesky factorization A = U**H * U.
1.1       bertrand  209: *
                    210:          DO 10 J = 1, N
                    211: *
                    212: *           Compute U(J,J) and test for non-positive-definiteness.
                    213: *
                    214:             AJJ = DBLE( AB( KD+1, J ) )
                    215:             IF( AJJ.LE.ZERO ) THEN
                    216:                AB( KD+1, J ) = AJJ
                    217:                GO TO 30
                    218:             END IF
                    219:             AJJ = SQRT( AJJ )
                    220:             AB( KD+1, J ) = AJJ
                    221: *
                    222: *           Compute elements J+1:J+KN of row J and update the
                    223: *           trailing submatrix within the band.
                    224: *
                    225:             KN = MIN( KD, N-J )
                    226:             IF( KN.GT.0 ) THEN
                    227:                CALL ZDSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
                    228:                CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
                    229:                CALL ZHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
                    230:      $                    AB( KD+1, J+1 ), KLD )
                    231:                CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
                    232:             END IF
                    233:    10    CONTINUE
                    234:       ELSE
                    235: *
1.8       bertrand  236: *        Compute the Cholesky factorization A = L*L**H.
1.1       bertrand  237: *
                    238:          DO 20 J = 1, N
                    239: *
                    240: *           Compute L(J,J) and test for non-positive-definiteness.
                    241: *
                    242:             AJJ = DBLE( AB( 1, J ) )
                    243:             IF( AJJ.LE.ZERO ) THEN
                    244:                AB( 1, J ) = AJJ
                    245:                GO TO 30
                    246:             END IF
                    247:             AJJ = SQRT( AJJ )
                    248:             AB( 1, J ) = AJJ
                    249: *
                    250: *           Compute elements J+1:J+KN of column J and update the
                    251: *           trailing submatrix within the band.
                    252: *
                    253:             KN = MIN( KD, N-J )
                    254:             IF( KN.GT.0 ) THEN
                    255:                CALL ZDSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
                    256:                CALL ZHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
                    257:      $                    AB( 1, J+1 ), KLD )
                    258:             END IF
                    259:    20    CONTINUE
                    260:       END IF
                    261:       RETURN
                    262: *
                    263:    30 CONTINUE
                    264:       INFO = J
                    265:       RETURN
                    266: *
                    267: *     End of ZPBTF2
                    268: *
                    269:       END

CVSweb interface <joel.bertrand@systella.fr>