File:  [local] / rpl / lapack / lapack / zpbsvx.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:54 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPBSVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbsvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbsvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbsvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
   22: *                          EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
   23: *                          WORK, RWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EQUED, FACT, UPLO
   27: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
   32: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   33: *      $                   WORK( * ), X( LDX, * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
   43: *> compute the solution to a complex system of linear equations
   44: *>    A * X = B,
   45: *> where A is an N-by-N Hermitian positive definite band matrix and X
   46: *> and B are N-by-NRHS matrices.
   47: *>
   48: *> Error bounds on the solution and a condition estimate are also
   49: *> provided.
   50: *> \endverbatim
   51: *
   52: *> \par Description:
   53: *  =================
   54: *>
   55: *> \verbatim
   56: *>
   57: *> The following steps are performed:
   58: *>
   59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   60: *>    the system:
   61: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
   62: *>    Whether or not the system will be equilibrated depends on the
   63: *>    scaling of the matrix A, but if equilibration is used, A is
   64: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   65: *>
   66: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
   67: *>    factor the matrix A (after equilibration if FACT = 'E') as
   68: *>       A = U**H * U,  if UPLO = 'U', or
   69: *>       A = L * L**H,  if UPLO = 'L',
   70: *>    where U is an upper triangular band matrix, and L is a lower
   71: *>    triangular band matrix.
   72: *>
   73: *> 3. If the leading i-by-i principal minor is not positive definite,
   74: *>    then the routine returns with INFO = i. Otherwise, the factored
   75: *>    form of A is used to estimate the condition number of the matrix
   76: *>    A.  If the reciprocal of the condition number is less than machine
   77: *>    precision, INFO = N+1 is returned as a warning, but the routine
   78: *>    still goes on to solve for X and compute error bounds as
   79: *>    described below.
   80: *>
   81: *> 4. The system of equations is solved for X using the factored form
   82: *>    of A.
   83: *>
   84: *> 5. Iterative refinement is applied to improve the computed solution
   85: *>    matrix and calculate error bounds and backward error estimates
   86: *>    for it.
   87: *>
   88: *> 6. If equilibration was used, the matrix X is premultiplied by
   89: *>    diag(S) so that it solves the original system before
   90: *>    equilibration.
   91: *> \endverbatim
   92: *
   93: *  Arguments:
   94: *  ==========
   95: *
   96: *> \param[in] FACT
   97: *> \verbatim
   98: *>          FACT is CHARACTER*1
   99: *>          Specifies whether or not the factored form of the matrix A is
  100: *>          supplied on entry, and if not, whether the matrix A should be
  101: *>          equilibrated before it is factored.
  102: *>          = 'F':  On entry, AFB contains the factored form of A.
  103: *>                  If EQUED = 'Y', the matrix A has been equilibrated
  104: *>                  with scaling factors given by S.  AB and AFB will not
  105: *>                  be modified.
  106: *>          = 'N':  The matrix A will be copied to AFB and factored.
  107: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  108: *>                  copied to AFB and factored.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] UPLO
  112: *> \verbatim
  113: *>          UPLO is CHARACTER*1
  114: *>          = 'U':  Upper triangle of A is stored;
  115: *>          = 'L':  Lower triangle of A is stored.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] N
  119: *> \verbatim
  120: *>          N is INTEGER
  121: *>          The number of linear equations, i.e., the order of the
  122: *>          matrix A.  N >= 0.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] KD
  126: *> \verbatim
  127: *>          KD is INTEGER
  128: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
  129: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] NRHS
  133: *> \verbatim
  134: *>          NRHS is INTEGER
  135: *>          The number of right-hand sides, i.e., the number of columns
  136: *>          of the matrices B and X.  NRHS >= 0.
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] AB
  140: *> \verbatim
  141: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  142: *>          On entry, the upper or lower triangle of the Hermitian band
  143: *>          matrix A, stored in the first KD+1 rows of the array, except
  144: *>          if FACT = 'F' and EQUED = 'Y', then A must contain the
  145: *>          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
  146: *>          is stored in the j-th column of the array AB as follows:
  147: *>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
  148: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
  149: *>          See below for further details.
  150: *>
  151: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  152: *>          diag(S)*A*diag(S).
  153: *> \endverbatim
  154: *>
  155: *> \param[in] LDAB
  156: *> \verbatim
  157: *>          LDAB is INTEGER
  158: *>          The leading dimension of the array A.  LDAB >= KD+1.
  159: *> \endverbatim
  160: *>
  161: *> \param[in,out] AFB
  162: *> \verbatim
  163: *>          AFB is or output) COMPLEX*16 array, dimension (LDAFB,N)
  164: *>          If FACT = 'F', then AFB is an input argument and on entry
  165: *>          contains the triangular factor U or L from the Cholesky
  166: *>          factorization A = U**H *U or A = L*L**H of the band matrix
  167: *>          A, in the same storage format as A (see AB).  If EQUED = 'Y',
  168: *>          then AFB is the factored form of the equilibrated matrix A.
  169: *>
  170: *>          If FACT = 'N', then AFB is an output argument and on exit
  171: *>          returns the triangular factor U or L from the Cholesky
  172: *>          factorization A = U**H *U or A = L*L**H.
  173: *>
  174: *>          If FACT = 'E', then AFB is an output argument and on exit
  175: *>          returns the triangular factor U or L from the Cholesky
  176: *>          factorization A = U**H *U or A = L*L**H of the equilibrated
  177: *>          matrix A (see the description of A for the form of the
  178: *>          equilibrated matrix).
  179: *> \endverbatim
  180: *>
  181: *> \param[in] LDAFB
  182: *> \verbatim
  183: *>          LDAFB is INTEGER
  184: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
  185: *> \endverbatim
  186: *>
  187: *> \param[in,out] EQUED
  188: *> \verbatim
  189: *>          EQUED is or output) CHARACTER*1
  190: *>          Specifies the form of equilibration that was done.
  191: *>          = 'N':  No equilibration (always true if FACT = 'N').
  192: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
  193: *>                  diag(S) * A * diag(S).
  194: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  195: *>          output argument.
  196: *> \endverbatim
  197: *>
  198: *> \param[in,out] S
  199: *> \verbatim
  200: *>          S is or output) DOUBLE PRECISION array, dimension (N)
  201: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
  202: *>          an input argument if FACT = 'F'; otherwise, S is an output
  203: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
  204: *>          must be positive.
  205: *> \endverbatim
  206: *>
  207: *> \param[in,out] B
  208: *> \verbatim
  209: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  210: *>          On entry, the N-by-NRHS right hand side matrix B.
  211: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  212: *>          B is overwritten by diag(S) * B.
  213: *> \endverbatim
  214: *>
  215: *> \param[in] LDB
  216: *> \verbatim
  217: *>          LDB is INTEGER
  218: *>          The leading dimension of the array B.  LDB >= max(1,N).
  219: *> \endverbatim
  220: *>
  221: *> \param[out] X
  222: *> \verbatim
  223: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  224: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  225: *>          the original system of equations.  Note that if EQUED = 'Y',
  226: *>          A and B are modified on exit, and the solution to the
  227: *>          equilibrated system is inv(diag(S))*X.
  228: *> \endverbatim
  229: *>
  230: *> \param[in] LDX
  231: *> \verbatim
  232: *>          LDX is INTEGER
  233: *>          The leading dimension of the array X.  LDX >= max(1,N).
  234: *> \endverbatim
  235: *>
  236: *> \param[out] RCOND
  237: *> \verbatim
  238: *>          RCOND is DOUBLE PRECISION
  239: *>          The estimate of the reciprocal condition number of the matrix
  240: *>          A after equilibration (if done).  If RCOND is less than the
  241: *>          machine precision (in particular, if RCOND = 0), the matrix
  242: *>          is singular to working precision.  This condition is
  243: *>          indicated by a return code of INFO > 0.
  244: *> \endverbatim
  245: *>
  246: *> \param[out] FERR
  247: *> \verbatim
  248: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  249: *>          The estimated forward error bound for each solution vector
  250: *>          X(j) (the j-th column of the solution matrix X).
  251: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  252: *>          is an estimated upper bound for the magnitude of the largest
  253: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  254: *>          largest element in X(j).  The estimate is as reliable as
  255: *>          the estimate for RCOND, and is almost always a slight
  256: *>          overestimate of the true error.
  257: *> \endverbatim
  258: *>
  259: *> \param[out] BERR
  260: *> \verbatim
  261: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  262: *>          The componentwise relative backward error of each solution
  263: *>          vector X(j) (i.e., the smallest relative change in
  264: *>          any element of A or B that makes X(j) an exact solution).
  265: *> \endverbatim
  266: *>
  267: *> \param[out] WORK
  268: *> \verbatim
  269: *>          WORK is COMPLEX*16 array, dimension (2*N)
  270: *> \endverbatim
  271: *>
  272: *> \param[out] RWORK
  273: *> \verbatim
  274: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  275: *> \endverbatim
  276: *>
  277: *> \param[out] INFO
  278: *> \verbatim
  279: *>          INFO is INTEGER
  280: *>          = 0: successful exit
  281: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  282: *>          > 0: if INFO = i, and i is
  283: *>                <= N:  the leading minor of order i of A is
  284: *>                       not positive definite, so the factorization
  285: *>                       could not be completed, and the solution has not
  286: *>                       been computed. RCOND = 0 is returned.
  287: *>                = N+1: U is nonsingular, but RCOND is less than machine
  288: *>                       precision, meaning that the matrix is singular
  289: *>                       to working precision.  Nevertheless, the
  290: *>                       solution and error bounds are computed because
  291: *>                       there are a number of situations where the
  292: *>                       computed solution can be more accurate than the
  293: *>                       value of RCOND would suggest.
  294: *> \endverbatim
  295: *
  296: *  Authors:
  297: *  ========
  298: *
  299: *> \author Univ. of Tennessee 
  300: *> \author Univ. of California Berkeley 
  301: *> \author Univ. of Colorado Denver 
  302: *> \author NAG Ltd. 
  303: *
  304: *> \date November 2011
  305: *
  306: *> \ingroup complex16OTHERsolve
  307: *
  308: *> \par Further Details:
  309: *  =====================
  310: *>
  311: *> \verbatim
  312: *>
  313: *>  The band storage scheme is illustrated by the following example, when
  314: *>  N = 6, KD = 2, and UPLO = 'U':
  315: *>
  316: *>  Two-dimensional storage of the Hermitian matrix A:
  317: *>
  318: *>     a11  a12  a13
  319: *>          a22  a23  a24
  320: *>               a33  a34  a35
  321: *>                    a44  a45  a46
  322: *>                         a55  a56
  323: *>     (aij=conjg(aji))         a66
  324: *>
  325: *>  Band storage of the upper triangle of A:
  326: *>
  327: *>      *    *   a13  a24  a35  a46
  328: *>      *   a12  a23  a34  a45  a56
  329: *>     a11  a22  a33  a44  a55  a66
  330: *>
  331: *>  Similarly, if UPLO = 'L' the format of A is as follows:
  332: *>
  333: *>     a11  a22  a33  a44  a55  a66
  334: *>     a21  a32  a43  a54  a65   *
  335: *>     a31  a42  a53  a64   *    *
  336: *>
  337: *>  Array elements marked * are not used by the routine.
  338: *> \endverbatim
  339: *>
  340: *  =====================================================================
  341:       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
  342:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
  343:      $                   WORK, RWORK, INFO )
  344: *
  345: *  -- LAPACK driver routine (version 3.4.0) --
  346: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  347: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  348: *     November 2011
  349: *
  350: *     .. Scalar Arguments ..
  351:       CHARACTER          EQUED, FACT, UPLO
  352:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  353:       DOUBLE PRECISION   RCOND
  354: *     ..
  355: *     .. Array Arguments ..
  356:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
  357:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  358:      $                   WORK( * ), X( LDX, * )
  359: *     ..
  360: *
  361: *  =====================================================================
  362: *
  363: *     .. Parameters ..
  364:       DOUBLE PRECISION   ZERO, ONE
  365:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  366: *     ..
  367: *     .. Local Scalars ..
  368:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
  369:       INTEGER            I, INFEQU, J, J1, J2
  370:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  371: *     ..
  372: *     .. External Functions ..
  373:       LOGICAL            LSAME
  374:       DOUBLE PRECISION   DLAMCH, ZLANHB
  375:       EXTERNAL           LSAME, DLAMCH, ZLANHB
  376: *     ..
  377: *     .. External Subroutines ..
  378:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHB, ZPBCON, ZPBEQU,
  379:      $                   ZPBRFS, ZPBTRF, ZPBTRS
  380: *     ..
  381: *     .. Intrinsic Functions ..
  382:       INTRINSIC          MAX, MIN
  383: *     ..
  384: *     .. Executable Statements ..
  385: *
  386:       INFO = 0
  387:       NOFACT = LSAME( FACT, 'N' )
  388:       EQUIL = LSAME( FACT, 'E' )
  389:       UPPER = LSAME( UPLO, 'U' )
  390:       IF( NOFACT .OR. EQUIL ) THEN
  391:          EQUED = 'N'
  392:          RCEQU = .FALSE.
  393:       ELSE
  394:          RCEQU = LSAME( EQUED, 'Y' )
  395:          SMLNUM = DLAMCH( 'Safe minimum' )
  396:          BIGNUM = ONE / SMLNUM
  397:       END IF
  398: *
  399: *     Test the input parameters.
  400: *
  401:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  402:      $     THEN
  403:          INFO = -1
  404:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  405:          INFO = -2
  406:       ELSE IF( N.LT.0 ) THEN
  407:          INFO = -3
  408:       ELSE IF( KD.LT.0 ) THEN
  409:          INFO = -4
  410:       ELSE IF( NRHS.LT.0 ) THEN
  411:          INFO = -5
  412:       ELSE IF( LDAB.LT.KD+1 ) THEN
  413:          INFO = -7
  414:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  415:          INFO = -9
  416:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  417:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  418:          INFO = -10
  419:       ELSE
  420:          IF( RCEQU ) THEN
  421:             SMIN = BIGNUM
  422:             SMAX = ZERO
  423:             DO 10 J = 1, N
  424:                SMIN = MIN( SMIN, S( J ) )
  425:                SMAX = MAX( SMAX, S( J ) )
  426:    10       CONTINUE
  427:             IF( SMIN.LE.ZERO ) THEN
  428:                INFO = -11
  429:             ELSE IF( N.GT.0 ) THEN
  430:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  431:             ELSE
  432:                SCOND = ONE
  433:             END IF
  434:          END IF
  435:          IF( INFO.EQ.0 ) THEN
  436:             IF( LDB.LT.MAX( 1, N ) ) THEN
  437:                INFO = -13
  438:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  439:                INFO = -15
  440:             END IF
  441:          END IF
  442:       END IF
  443: *
  444:       IF( INFO.NE.0 ) THEN
  445:          CALL XERBLA( 'ZPBSVX', -INFO )
  446:          RETURN
  447:       END IF
  448: *
  449:       IF( EQUIL ) THEN
  450: *
  451: *        Compute row and column scalings to equilibrate the matrix A.
  452: *
  453:          CALL ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
  454:          IF( INFEQU.EQ.0 ) THEN
  455: *
  456: *           Equilibrate the matrix.
  457: *
  458:             CALL ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
  459:             RCEQU = LSAME( EQUED, 'Y' )
  460:          END IF
  461:       END IF
  462: *
  463: *     Scale the right-hand side.
  464: *
  465:       IF( RCEQU ) THEN
  466:          DO 30 J = 1, NRHS
  467:             DO 20 I = 1, N
  468:                B( I, J ) = S( I )*B( I, J )
  469:    20       CONTINUE
  470:    30    CONTINUE
  471:       END IF
  472: *
  473:       IF( NOFACT .OR. EQUIL ) THEN
  474: *
  475: *        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
  476: *
  477:          IF( UPPER ) THEN
  478:             DO 40 J = 1, N
  479:                J1 = MAX( J-KD, 1 )
  480:                CALL ZCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
  481:      $                     AFB( KD+1-J+J1, J ), 1 )
  482:    40       CONTINUE
  483:          ELSE
  484:             DO 50 J = 1, N
  485:                J2 = MIN( J+KD, N )
  486:                CALL ZCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
  487:    50       CONTINUE
  488:          END IF
  489: *
  490:          CALL ZPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
  491: *
  492: *        Return if INFO is non-zero.
  493: *
  494:          IF( INFO.GT.0 )THEN
  495:             RCOND = ZERO
  496:             RETURN
  497:          END IF
  498:       END IF
  499: *
  500: *     Compute the norm of the matrix A.
  501: *
  502:       ANORM = ZLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
  503: *
  504: *     Compute the reciprocal of the condition number of A.
  505: *
  506:       CALL ZPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
  507:      $             INFO )
  508: *
  509: *     Compute the solution matrix X.
  510: *
  511:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  512:       CALL ZPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
  513: *
  514: *     Use iterative refinement to improve the computed solution and
  515: *     compute error bounds and backward error estimates for it.
  516: *
  517:       CALL ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
  518:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
  519: *
  520: *     Transform the solution matrix X to a solution of the original
  521: *     system.
  522: *
  523:       IF( RCEQU ) THEN
  524:          DO 70 J = 1, NRHS
  525:             DO 60 I = 1, N
  526:                X( I, J ) = S( I )*X( I, J )
  527:    60       CONTINUE
  528:    70    CONTINUE
  529:          DO 80 J = 1, NRHS
  530:             FERR( J ) = FERR( J ) / SCOND
  531:    80    CONTINUE
  532:       END IF
  533: *
  534: *     Set INFO = N+1 if the matrix is singular to working precision.
  535: *
  536:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  537:      $   INFO = N + 1
  538: *
  539:       RETURN
  540: *
  541: *     End of ZPBSVX
  542: *
  543:       END

CVSweb interface <joel.bertrand@systella.fr>