Annotation of rpl/lapack/lapack/zpbsvx.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZPBSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbsvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbsvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbsvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
        !            22: *                          EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
        !            23: *                          WORK, RWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          EQUED, FACT, UPLO
        !            27: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
        !            32: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            33: *      $                   WORK( * ), X( LDX, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
        !            43: *> compute the solution to a complex system of linear equations
        !            44: *>    A * X = B,
        !            45: *> where A is an N-by-N Hermitian positive definite band matrix and X
        !            46: *> and B are N-by-NRHS matrices.
        !            47: *>
        !            48: *> Error bounds on the solution and a condition estimate are also
        !            49: *> provided.
        !            50: *> \endverbatim
        !            51: *
        !            52: *> \par Description:
        !            53: *  =================
        !            54: *>
        !            55: *> \verbatim
        !            56: *>
        !            57: *> The following steps are performed:
        !            58: *>
        !            59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            60: *>    the system:
        !            61: *>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
        !            62: *>    Whether or not the system will be equilibrated depends on the
        !            63: *>    scaling of the matrix A, but if equilibration is used, A is
        !            64: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
        !            65: *>
        !            66: *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
        !            67: *>    factor the matrix A (after equilibration if FACT = 'E') as
        !            68: *>       A = U**H * U,  if UPLO = 'U', or
        !            69: *>       A = L * L**H,  if UPLO = 'L',
        !            70: *>    where U is an upper triangular band matrix, and L is a lower
        !            71: *>    triangular band matrix.
        !            72: *>
        !            73: *> 3. If the leading i-by-i principal minor is not positive definite,
        !            74: *>    then the routine returns with INFO = i. Otherwise, the factored
        !            75: *>    form of A is used to estimate the condition number of the matrix
        !            76: *>    A.  If the reciprocal of the condition number is less than machine
        !            77: *>    precision, INFO = N+1 is returned as a warning, but the routine
        !            78: *>    still goes on to solve for X and compute error bounds as
        !            79: *>    described below.
        !            80: *>
        !            81: *> 4. The system of equations is solved for X using the factored form
        !            82: *>    of A.
        !            83: *>
        !            84: *> 5. Iterative refinement is applied to improve the computed solution
        !            85: *>    matrix and calculate error bounds and backward error estimates
        !            86: *>    for it.
        !            87: *>
        !            88: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            89: *>    diag(S) so that it solves the original system before
        !            90: *>    equilibration.
        !            91: *> \endverbatim
        !            92: *
        !            93: *  Arguments:
        !            94: *  ==========
        !            95: *
        !            96: *> \param[in] FACT
        !            97: *> \verbatim
        !            98: *>          FACT is CHARACTER*1
        !            99: *>          Specifies whether or not the factored form of the matrix A is
        !           100: *>          supplied on entry, and if not, whether the matrix A should be
        !           101: *>          equilibrated before it is factored.
        !           102: *>          = 'F':  On entry, AFB contains the factored form of A.
        !           103: *>                  If EQUED = 'Y', the matrix A has been equilibrated
        !           104: *>                  with scaling factors given by S.  AB and AFB will not
        !           105: *>                  be modified.
        !           106: *>          = 'N':  The matrix A will be copied to AFB and factored.
        !           107: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           108: *>                  copied to AFB and factored.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] UPLO
        !           112: *> \verbatim
        !           113: *>          UPLO is CHARACTER*1
        !           114: *>          = 'U':  Upper triangle of A is stored;
        !           115: *>          = 'L':  Lower triangle of A is stored.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] N
        !           119: *> \verbatim
        !           120: *>          N is INTEGER
        !           121: *>          The number of linear equations, i.e., the order of the
        !           122: *>          matrix A.  N >= 0.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in] KD
        !           126: *> \verbatim
        !           127: *>          KD is INTEGER
        !           128: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !           129: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] NRHS
        !           133: *> \verbatim
        !           134: *>          NRHS is INTEGER
        !           135: *>          The number of right-hand sides, i.e., the number of columns
        !           136: *>          of the matrices B and X.  NRHS >= 0.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in,out] AB
        !           140: *> \verbatim
        !           141: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
        !           142: *>          On entry, the upper or lower triangle of the Hermitian band
        !           143: *>          matrix A, stored in the first KD+1 rows of the array, except
        !           144: *>          if FACT = 'F' and EQUED = 'Y', then A must contain the
        !           145: *>          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
        !           146: *>          is stored in the j-th column of the array AB as follows:
        !           147: *>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
        !           148: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
        !           149: *>          See below for further details.
        !           150: *>
        !           151: *>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
        !           152: *>          diag(S)*A*diag(S).
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[in] LDAB
        !           156: *> \verbatim
        !           157: *>          LDAB is INTEGER
        !           158: *>          The leading dimension of the array A.  LDAB >= KD+1.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in,out] AFB
        !           162: *> \verbatim
        !           163: *>          AFB is or output) COMPLEX*16 array, dimension (LDAFB,N)
        !           164: *>          If FACT = 'F', then AFB is an input argument and on entry
        !           165: *>          contains the triangular factor U or L from the Cholesky
        !           166: *>          factorization A = U**H *U or A = L*L**H of the band matrix
        !           167: *>          A, in the same storage format as A (see AB).  If EQUED = 'Y',
        !           168: *>          then AFB is the factored form of the equilibrated matrix A.
        !           169: *>
        !           170: *>          If FACT = 'N', then AFB is an output argument and on exit
        !           171: *>          returns the triangular factor U or L from the Cholesky
        !           172: *>          factorization A = U**H *U or A = L*L**H.
        !           173: *>
        !           174: *>          If FACT = 'E', then AFB is an output argument and on exit
        !           175: *>          returns the triangular factor U or L from the Cholesky
        !           176: *>          factorization A = U**H *U or A = L*L**H of the equilibrated
        !           177: *>          matrix A (see the description of A for the form of the
        !           178: *>          equilibrated matrix).
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[in] LDAFB
        !           182: *> \verbatim
        !           183: *>          LDAFB is INTEGER
        !           184: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
        !           185: *> \endverbatim
        !           186: *>
        !           187: *> \param[in,out] EQUED
        !           188: *> \verbatim
        !           189: *>          EQUED is or output) CHARACTER*1
        !           190: *>          Specifies the form of equilibration that was done.
        !           191: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           192: *>          = 'Y':  Equilibration was done, i.e., A has been replaced by
        !           193: *>                  diag(S) * A * diag(S).
        !           194: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           195: *>          output argument.
        !           196: *> \endverbatim
        !           197: *>
        !           198: *> \param[in,out] S
        !           199: *> \verbatim
        !           200: *>          S is or output) DOUBLE PRECISION array, dimension (N)
        !           201: *>          The scale factors for A; not accessed if EQUED = 'N'.  S is
        !           202: *>          an input argument if FACT = 'F'; otherwise, S is an output
        !           203: *>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
        !           204: *>          must be positive.
        !           205: *> \endverbatim
        !           206: *>
        !           207: *> \param[in,out] B
        !           208: *> \verbatim
        !           209: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           210: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           211: *>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
        !           212: *>          B is overwritten by diag(S) * B.
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[in] LDB
        !           216: *> \verbatim
        !           217: *>          LDB is INTEGER
        !           218: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           219: *> \endverbatim
        !           220: *>
        !           221: *> \param[out] X
        !           222: *> \verbatim
        !           223: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           224: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
        !           225: *>          the original system of equations.  Note that if EQUED = 'Y',
        !           226: *>          A and B are modified on exit, and the solution to the
        !           227: *>          equilibrated system is inv(diag(S))*X.
        !           228: *> \endverbatim
        !           229: *>
        !           230: *> \param[in] LDX
        !           231: *> \verbatim
        !           232: *>          LDX is INTEGER
        !           233: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           234: *> \endverbatim
        !           235: *>
        !           236: *> \param[out] RCOND
        !           237: *> \verbatim
        !           238: *>          RCOND is DOUBLE PRECISION
        !           239: *>          The estimate of the reciprocal condition number of the matrix
        !           240: *>          A after equilibration (if done).  If RCOND is less than the
        !           241: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           242: *>          is singular to working precision.  This condition is
        !           243: *>          indicated by a return code of INFO > 0.
        !           244: *> \endverbatim
        !           245: *>
        !           246: *> \param[out] FERR
        !           247: *> \verbatim
        !           248: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           249: *>          The estimated forward error bound for each solution vector
        !           250: *>          X(j) (the j-th column of the solution matrix X).
        !           251: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           252: *>          is an estimated upper bound for the magnitude of the largest
        !           253: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           254: *>          largest element in X(j).  The estimate is as reliable as
        !           255: *>          the estimate for RCOND, and is almost always a slight
        !           256: *>          overestimate of the true error.
        !           257: *> \endverbatim
        !           258: *>
        !           259: *> \param[out] BERR
        !           260: *> \verbatim
        !           261: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           262: *>          The componentwise relative backward error of each solution
        !           263: *>          vector X(j) (i.e., the smallest relative change in
        !           264: *>          any element of A or B that makes X(j) an exact solution).
        !           265: *> \endverbatim
        !           266: *>
        !           267: *> \param[out] WORK
        !           268: *> \verbatim
        !           269: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           270: *> \endverbatim
        !           271: *>
        !           272: *> \param[out] RWORK
        !           273: *> \verbatim
        !           274: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           275: *> \endverbatim
        !           276: *>
        !           277: *> \param[out] INFO
        !           278: *> \verbatim
        !           279: *>          INFO is INTEGER
        !           280: *>          = 0: successful exit
        !           281: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           282: *>          > 0: if INFO = i, and i is
        !           283: *>                <= N:  the leading minor of order i of A is
        !           284: *>                       not positive definite, so the factorization
        !           285: *>                       could not be completed, and the solution has not
        !           286: *>                       been computed. RCOND = 0 is returned.
        !           287: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           288: *>                       precision, meaning that the matrix is singular
        !           289: *>                       to working precision.  Nevertheless, the
        !           290: *>                       solution and error bounds are computed because
        !           291: *>                       there are a number of situations where the
        !           292: *>                       computed solution can be more accurate than the
        !           293: *>                       value of RCOND would suggest.
        !           294: *> \endverbatim
        !           295: *
        !           296: *  Authors:
        !           297: *  ========
        !           298: *
        !           299: *> \author Univ. of Tennessee 
        !           300: *> \author Univ. of California Berkeley 
        !           301: *> \author Univ. of Colorado Denver 
        !           302: *> \author NAG Ltd. 
        !           303: *
        !           304: *> \date November 2011
        !           305: *
        !           306: *> \ingroup complex16OTHERsolve
        !           307: *
        !           308: *> \par Further Details:
        !           309: *  =====================
        !           310: *>
        !           311: *> \verbatim
        !           312: *>
        !           313: *>  The band storage scheme is illustrated by the following example, when
        !           314: *>  N = 6, KD = 2, and UPLO = 'U':
        !           315: *>
        !           316: *>  Two-dimensional storage of the Hermitian matrix A:
        !           317: *>
        !           318: *>     a11  a12  a13
        !           319: *>          a22  a23  a24
        !           320: *>               a33  a34  a35
        !           321: *>                    a44  a45  a46
        !           322: *>                         a55  a56
        !           323: *>     (aij=conjg(aji))         a66
        !           324: *>
        !           325: *>  Band storage of the upper triangle of A:
        !           326: *>
        !           327: *>      *    *   a13  a24  a35  a46
        !           328: *>      *   a12  a23  a34  a45  a56
        !           329: *>     a11  a22  a33  a44  a55  a66
        !           330: *>
        !           331: *>  Similarly, if UPLO = 'L' the format of A is as follows:
        !           332: *>
        !           333: *>     a11  a22  a33  a44  a55  a66
        !           334: *>     a21  a32  a43  a54  a65   *
        !           335: *>     a31  a42  a53  a64   *    *
        !           336: *>
        !           337: *>  Array elements marked * are not used by the routine.
        !           338: *> \endverbatim
        !           339: *>
        !           340: *  =====================================================================
1.1       bertrand  341:       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
                    342:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
                    343:      $                   WORK, RWORK, INFO )
                    344: *
1.9     ! bertrand  345: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  346: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    347: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  348: *     November 2011
1.1       bertrand  349: *
                    350: *     .. Scalar Arguments ..
                    351:       CHARACTER          EQUED, FACT, UPLO
                    352:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                    353:       DOUBLE PRECISION   RCOND
                    354: *     ..
                    355: *     .. Array Arguments ..
                    356:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                    357:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    358:      $                   WORK( * ), X( LDX, * )
                    359: *     ..
                    360: *
                    361: *  =====================================================================
                    362: *
                    363: *     .. Parameters ..
                    364:       DOUBLE PRECISION   ZERO, ONE
                    365:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    366: *     ..
                    367: *     .. Local Scalars ..
                    368:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
                    369:       INTEGER            I, INFEQU, J, J1, J2
                    370:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    371: *     ..
                    372: *     .. External Functions ..
                    373:       LOGICAL            LSAME
                    374:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    375:       EXTERNAL           LSAME, DLAMCH, ZLANHB
                    376: *     ..
                    377: *     .. External Subroutines ..
                    378:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHB, ZPBCON, ZPBEQU,
                    379:      $                   ZPBRFS, ZPBTRF, ZPBTRS
                    380: *     ..
                    381: *     .. Intrinsic Functions ..
                    382:       INTRINSIC          MAX, MIN
                    383: *     ..
                    384: *     .. Executable Statements ..
                    385: *
                    386:       INFO = 0
                    387:       NOFACT = LSAME( FACT, 'N' )
                    388:       EQUIL = LSAME( FACT, 'E' )
                    389:       UPPER = LSAME( UPLO, 'U' )
                    390:       IF( NOFACT .OR. EQUIL ) THEN
                    391:          EQUED = 'N'
                    392:          RCEQU = .FALSE.
                    393:       ELSE
                    394:          RCEQU = LSAME( EQUED, 'Y' )
                    395:          SMLNUM = DLAMCH( 'Safe minimum' )
                    396:          BIGNUM = ONE / SMLNUM
                    397:       END IF
                    398: *
                    399: *     Test the input parameters.
                    400: *
                    401:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    402:      $     THEN
                    403:          INFO = -1
                    404:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    405:          INFO = -2
                    406:       ELSE IF( N.LT.0 ) THEN
                    407:          INFO = -3
                    408:       ELSE IF( KD.LT.0 ) THEN
                    409:          INFO = -4
                    410:       ELSE IF( NRHS.LT.0 ) THEN
                    411:          INFO = -5
                    412:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    413:          INFO = -7
                    414:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    415:          INFO = -9
                    416:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    417:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    418:          INFO = -10
                    419:       ELSE
                    420:          IF( RCEQU ) THEN
                    421:             SMIN = BIGNUM
                    422:             SMAX = ZERO
                    423:             DO 10 J = 1, N
                    424:                SMIN = MIN( SMIN, S( J ) )
                    425:                SMAX = MAX( SMAX, S( J ) )
                    426:    10       CONTINUE
                    427:             IF( SMIN.LE.ZERO ) THEN
                    428:                INFO = -11
                    429:             ELSE IF( N.GT.0 ) THEN
                    430:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    431:             ELSE
                    432:                SCOND = ONE
                    433:             END IF
                    434:          END IF
                    435:          IF( INFO.EQ.0 ) THEN
                    436:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    437:                INFO = -13
                    438:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    439:                INFO = -15
                    440:             END IF
                    441:          END IF
                    442:       END IF
                    443: *
                    444:       IF( INFO.NE.0 ) THEN
                    445:          CALL XERBLA( 'ZPBSVX', -INFO )
                    446:          RETURN
                    447:       END IF
                    448: *
                    449:       IF( EQUIL ) THEN
                    450: *
                    451: *        Compute row and column scalings to equilibrate the matrix A.
                    452: *
                    453:          CALL ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
                    454:          IF( INFEQU.EQ.0 ) THEN
                    455: *
                    456: *           Equilibrate the matrix.
                    457: *
                    458:             CALL ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
                    459:             RCEQU = LSAME( EQUED, 'Y' )
                    460:          END IF
                    461:       END IF
                    462: *
                    463: *     Scale the right-hand side.
                    464: *
                    465:       IF( RCEQU ) THEN
                    466:          DO 30 J = 1, NRHS
                    467:             DO 20 I = 1, N
                    468:                B( I, J ) = S( I )*B( I, J )
                    469:    20       CONTINUE
                    470:    30    CONTINUE
                    471:       END IF
                    472: *
                    473:       IF( NOFACT .OR. EQUIL ) THEN
                    474: *
1.8       bertrand  475: *        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
1.1       bertrand  476: *
                    477:          IF( UPPER ) THEN
                    478:             DO 40 J = 1, N
                    479:                J1 = MAX( J-KD, 1 )
                    480:                CALL ZCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
                    481:      $                     AFB( KD+1-J+J1, J ), 1 )
                    482:    40       CONTINUE
                    483:          ELSE
                    484:             DO 50 J = 1, N
                    485:                J2 = MIN( J+KD, N )
                    486:                CALL ZCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
                    487:    50       CONTINUE
                    488:          END IF
                    489: *
                    490:          CALL ZPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
                    491: *
                    492: *        Return if INFO is non-zero.
                    493: *
                    494:          IF( INFO.GT.0 )THEN
                    495:             RCOND = ZERO
                    496:             RETURN
                    497:          END IF
                    498:       END IF
                    499: *
                    500: *     Compute the norm of the matrix A.
                    501: *
                    502:       ANORM = ZLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
                    503: *
                    504: *     Compute the reciprocal of the condition number of A.
                    505: *
                    506:       CALL ZPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
                    507:      $             INFO )
                    508: *
                    509: *     Compute the solution matrix X.
                    510: *
                    511:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    512:       CALL ZPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
                    513: *
                    514: *     Use iterative refinement to improve the computed solution and
                    515: *     compute error bounds and backward error estimates for it.
                    516: *
                    517:       CALL ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
                    518:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    519: *
                    520: *     Transform the solution matrix X to a solution of the original
                    521: *     system.
                    522: *
                    523:       IF( RCEQU ) THEN
                    524:          DO 70 J = 1, NRHS
                    525:             DO 60 I = 1, N
                    526:                X( I, J ) = S( I )*X( I, J )
                    527:    60       CONTINUE
                    528:    70    CONTINUE
                    529:          DO 80 J = 1, NRHS
                    530:             FERR( J ) = FERR( J ) / SCOND
                    531:    80    CONTINUE
                    532:       END IF
                    533: *
                    534: *     Set INFO = N+1 if the matrix is singular to working precision.
                    535: *
                    536:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    537:      $   INFO = N + 1
                    538: *
                    539:       RETURN
                    540: *
                    541: *     End of ZPBSVX
                    542: *
                    543:       END

CVSweb interface <joel.bertrand@systella.fr>