Annotation of rpl/lapack/lapack/zpbsvx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
                      2:      $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
                      3:      $                   WORK, RWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EQUED, FACT, UPLO
                     12:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     13:       DOUBLE PRECISION   RCOND
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
                     17:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     18:      $                   WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
                     25: *  compute the solution to a complex system of linear equations
                     26: *     A * X = B,
                     27: *  where A is an N-by-N Hermitian positive definite band matrix and X
                     28: *  and B are N-by-NRHS matrices.
                     29: *
                     30: *  Error bounds on the solution and a condition estimate are also
                     31: *  provided.
                     32: *
                     33: *  Description
                     34: *  ===========
                     35: *
                     36: *  The following steps are performed:
                     37: *
                     38: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
                     39: *     the system:
                     40: *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
                     41: *     Whether or not the system will be equilibrated depends on the
                     42: *     scaling of the matrix A, but if equilibration is used, A is
                     43: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     44: *
                     45: *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
                     46: *     factor the matrix A (after equilibration if FACT = 'E') as
                     47: *        A = U**H * U,  if UPLO = 'U', or
                     48: *        A = L * L**H,  if UPLO = 'L',
                     49: *     where U is an upper triangular band matrix, and L is a lower
                     50: *     triangular band matrix.
                     51: *
                     52: *  3. If the leading i-by-i principal minor is not positive definite,
                     53: *     then the routine returns with INFO = i. Otherwise, the factored
                     54: *     form of A is used to estimate the condition number of the matrix
                     55: *     A.  If the reciprocal of the condition number is less than machine
                     56: *     precision, INFO = N+1 is returned as a warning, but the routine
                     57: *     still goes on to solve for X and compute error bounds as
                     58: *     described below.
                     59: *
                     60: *  4. The system of equations is solved for X using the factored form
                     61: *     of A.
                     62: *
                     63: *  5. Iterative refinement is applied to improve the computed solution
                     64: *     matrix and calculate error bounds and backward error estimates
                     65: *     for it.
                     66: *
                     67: *  6. If equilibration was used, the matrix X is premultiplied by
                     68: *     diag(S) so that it solves the original system before
                     69: *     equilibration.
                     70: *
                     71: *  Arguments
                     72: *  =========
                     73: *
                     74: *  FACT    (input) CHARACTER*1
                     75: *          Specifies whether or not the factored form of the matrix A is
                     76: *          supplied on entry, and if not, whether the matrix A should be
                     77: *          equilibrated before it is factored.
                     78: *          = 'F':  On entry, AFB contains the factored form of A.
                     79: *                  If EQUED = 'Y', the matrix A has been equilibrated
                     80: *                  with scaling factors given by S.  AB and AFB will not
                     81: *                  be modified.
                     82: *          = 'N':  The matrix A will be copied to AFB and factored.
                     83: *          = 'E':  The matrix A will be equilibrated if necessary, then
                     84: *                  copied to AFB and factored.
                     85: *
                     86: *  UPLO    (input) CHARACTER*1
                     87: *          = 'U':  Upper triangle of A is stored;
                     88: *          = 'L':  Lower triangle of A is stored.
                     89: *
                     90: *  N       (input) INTEGER
                     91: *          The number of linear equations, i.e., the order of the
                     92: *          matrix A.  N >= 0.
                     93: *
                     94: *  KD      (input) INTEGER
                     95: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     96: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     97: *
                     98: *  NRHS    (input) INTEGER
                     99: *          The number of right-hand sides, i.e., the number of columns
                    100: *          of the matrices B and X.  NRHS >= 0.
                    101: *
                    102: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
                    103: *          On entry, the upper or lower triangle of the Hermitian band
                    104: *          matrix A, stored in the first KD+1 rows of the array, except
                    105: *          if FACT = 'F' and EQUED = 'Y', then A must contain the
                    106: *          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
                    107: *          is stored in the j-th column of the array AB as follows:
                    108: *          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
                    109: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
                    110: *          See below for further details.
                    111: *
                    112: *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    113: *          diag(S)*A*diag(S).
                    114: *
                    115: *  LDAB    (input) INTEGER
                    116: *          The leading dimension of the array A.  LDAB >= KD+1.
                    117: *
                    118: *  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N)
                    119: *          If FACT = 'F', then AFB is an input argument and on entry
                    120: *          contains the triangular factor U or L from the Cholesky
                    121: *          factorization A = U**H*U or A = L*L**H of the band matrix
                    122: *          A, in the same storage format as A (see AB).  If EQUED = 'Y',
                    123: *          then AFB is the factored form of the equilibrated matrix A.
                    124: *
                    125: *          If FACT = 'N', then AFB is an output argument and on exit
                    126: *          returns the triangular factor U or L from the Cholesky
                    127: *          factorization A = U**H*U or A = L*L**H.
                    128: *
                    129: *          If FACT = 'E', then AFB is an output argument and on exit
                    130: *          returns the triangular factor U or L from the Cholesky
                    131: *          factorization A = U**H*U or A = L*L**H of the equilibrated
                    132: *          matrix A (see the description of A for the form of the
                    133: *          equilibrated matrix).
                    134: *
                    135: *  LDAFB   (input) INTEGER
                    136: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
                    137: *
                    138: *  EQUED   (input or output) CHARACTER*1
                    139: *          Specifies the form of equilibration that was done.
                    140: *          = 'N':  No equilibration (always true if FACT = 'N').
                    141: *          = 'Y':  Equilibration was done, i.e., A has been replaced by
                    142: *                  diag(S) * A * diag(S).
                    143: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    144: *          output argument.
                    145: *
                    146: *  S       (input or output) DOUBLE PRECISION array, dimension (N)
                    147: *          The scale factors for A; not accessed if EQUED = 'N'.  S is
                    148: *          an input argument if FACT = 'F'; otherwise, S is an output
                    149: *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                    150: *          must be positive.
                    151: *
                    152: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                    153: *          On entry, the N-by-NRHS right hand side matrix B.
                    154: *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                    155: *          B is overwritten by diag(S) * B.
                    156: *
                    157: *  LDB     (input) INTEGER
                    158: *          The leading dimension of the array B.  LDB >= max(1,N).
                    159: *
                    160: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    161: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                    162: *          the original system of equations.  Note that if EQUED = 'Y',
                    163: *          A and B are modified on exit, and the solution to the
                    164: *          equilibrated system is inv(diag(S))*X.
                    165: *
                    166: *  LDX     (input) INTEGER
                    167: *          The leading dimension of the array X.  LDX >= max(1,N).
                    168: *
                    169: *  RCOND   (output) DOUBLE PRECISION
                    170: *          The estimate of the reciprocal condition number of the matrix
                    171: *          A after equilibration (if done).  If RCOND is less than the
                    172: *          machine precision (in particular, if RCOND = 0), the matrix
                    173: *          is singular to working precision.  This condition is
                    174: *          indicated by a return code of INFO > 0.
                    175: *
                    176: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    177: *          The estimated forward error bound for each solution vector
                    178: *          X(j) (the j-th column of the solution matrix X).
                    179: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    180: *          is an estimated upper bound for the magnitude of the largest
                    181: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    182: *          largest element in X(j).  The estimate is as reliable as
                    183: *          the estimate for RCOND, and is almost always a slight
                    184: *          overestimate of the true error.
                    185: *
                    186: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    187: *          The componentwise relative backward error of each solution
                    188: *          vector X(j) (i.e., the smallest relative change in
                    189: *          any element of A or B that makes X(j) an exact solution).
                    190: *
                    191: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    192: *
                    193: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    194: *
                    195: *  INFO    (output) INTEGER
                    196: *          = 0: successful exit
                    197: *          < 0: if INFO = -i, the i-th argument had an illegal value
                    198: *          > 0: if INFO = i, and i is
                    199: *                <= N:  the leading minor of order i of A is
                    200: *                       not positive definite, so the factorization
                    201: *                       could not be completed, and the solution has not
                    202: *                       been computed. RCOND = 0 is returned.
                    203: *                = N+1: U is nonsingular, but RCOND is less than machine
                    204: *                       precision, meaning that the matrix is singular
                    205: *                       to working precision.  Nevertheless, the
                    206: *                       solution and error bounds are computed because
                    207: *                       there are a number of situations where the
                    208: *                       computed solution can be more accurate than the
                    209: *                       value of RCOND would suggest.
                    210: *
                    211: *  Further Details
                    212: *  ===============
                    213: *
                    214: *  The band storage scheme is illustrated by the following example, when
                    215: *  N = 6, KD = 2, and UPLO = 'U':
                    216: *
                    217: *  Two-dimensional storage of the Hermitian matrix A:
                    218: *
                    219: *     a11  a12  a13
                    220: *          a22  a23  a24
                    221: *               a33  a34  a35
                    222: *                    a44  a45  a46
                    223: *                         a55  a56
                    224: *     (aij=conjg(aji))         a66
                    225: *
                    226: *  Band storage of the upper triangle of A:
                    227: *
                    228: *      *    *   a13  a24  a35  a46
                    229: *      *   a12  a23  a34  a45  a56
                    230: *     a11  a22  a33  a44  a55  a66
                    231: *
                    232: *  Similarly, if UPLO = 'L' the format of A is as follows:
                    233: *
                    234: *     a11  a22  a33  a44  a55  a66
                    235: *     a21  a32  a43  a54  a65   *
                    236: *     a31  a42  a53  a64   *    *
                    237: *
                    238: *  Array elements marked * are not used by the routine.
                    239: *
                    240: *  =====================================================================
                    241: *
                    242: *     .. Parameters ..
                    243:       DOUBLE PRECISION   ZERO, ONE
                    244:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    245: *     ..
                    246: *     .. Local Scalars ..
                    247:       LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
                    248:       INTEGER            I, INFEQU, J, J1, J2
                    249:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
                    250: *     ..
                    251: *     .. External Functions ..
                    252:       LOGICAL            LSAME
                    253:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    254:       EXTERNAL           LSAME, DLAMCH, ZLANHB
                    255: *     ..
                    256: *     .. External Subroutines ..
                    257:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHB, ZPBCON, ZPBEQU,
                    258:      $                   ZPBRFS, ZPBTRF, ZPBTRS
                    259: *     ..
                    260: *     .. Intrinsic Functions ..
                    261:       INTRINSIC          MAX, MIN
                    262: *     ..
                    263: *     .. Executable Statements ..
                    264: *
                    265:       INFO = 0
                    266:       NOFACT = LSAME( FACT, 'N' )
                    267:       EQUIL = LSAME( FACT, 'E' )
                    268:       UPPER = LSAME( UPLO, 'U' )
                    269:       IF( NOFACT .OR. EQUIL ) THEN
                    270:          EQUED = 'N'
                    271:          RCEQU = .FALSE.
                    272:       ELSE
                    273:          RCEQU = LSAME( EQUED, 'Y' )
                    274:          SMLNUM = DLAMCH( 'Safe minimum' )
                    275:          BIGNUM = ONE / SMLNUM
                    276:       END IF
                    277: *
                    278: *     Test the input parameters.
                    279: *
                    280:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    281:      $     THEN
                    282:          INFO = -1
                    283:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    284:          INFO = -2
                    285:       ELSE IF( N.LT.0 ) THEN
                    286:          INFO = -3
                    287:       ELSE IF( KD.LT.0 ) THEN
                    288:          INFO = -4
                    289:       ELSE IF( NRHS.LT.0 ) THEN
                    290:          INFO = -5
                    291:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    292:          INFO = -7
                    293:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    294:          INFO = -9
                    295:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    296:      $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    297:          INFO = -10
                    298:       ELSE
                    299:          IF( RCEQU ) THEN
                    300:             SMIN = BIGNUM
                    301:             SMAX = ZERO
                    302:             DO 10 J = 1, N
                    303:                SMIN = MIN( SMIN, S( J ) )
                    304:                SMAX = MAX( SMAX, S( J ) )
                    305:    10       CONTINUE
                    306:             IF( SMIN.LE.ZERO ) THEN
                    307:                INFO = -11
                    308:             ELSE IF( N.GT.0 ) THEN
                    309:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    310:             ELSE
                    311:                SCOND = ONE
                    312:             END IF
                    313:          END IF
                    314:          IF( INFO.EQ.0 ) THEN
                    315:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    316:                INFO = -13
                    317:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    318:                INFO = -15
                    319:             END IF
                    320:          END IF
                    321:       END IF
                    322: *
                    323:       IF( INFO.NE.0 ) THEN
                    324:          CALL XERBLA( 'ZPBSVX', -INFO )
                    325:          RETURN
                    326:       END IF
                    327: *
                    328:       IF( EQUIL ) THEN
                    329: *
                    330: *        Compute row and column scalings to equilibrate the matrix A.
                    331: *
                    332:          CALL ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
                    333:          IF( INFEQU.EQ.0 ) THEN
                    334: *
                    335: *           Equilibrate the matrix.
                    336: *
                    337:             CALL ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
                    338:             RCEQU = LSAME( EQUED, 'Y' )
                    339:          END IF
                    340:       END IF
                    341: *
                    342: *     Scale the right-hand side.
                    343: *
                    344:       IF( RCEQU ) THEN
                    345:          DO 30 J = 1, NRHS
                    346:             DO 20 I = 1, N
                    347:                B( I, J ) = S( I )*B( I, J )
                    348:    20       CONTINUE
                    349:    30    CONTINUE
                    350:       END IF
                    351: *
                    352:       IF( NOFACT .OR. EQUIL ) THEN
                    353: *
                    354: *        Compute the Cholesky factorization A = U'*U or A = L*L'.
                    355: *
                    356:          IF( UPPER ) THEN
                    357:             DO 40 J = 1, N
                    358:                J1 = MAX( J-KD, 1 )
                    359:                CALL ZCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
                    360:      $                     AFB( KD+1-J+J1, J ), 1 )
                    361:    40       CONTINUE
                    362:          ELSE
                    363:             DO 50 J = 1, N
                    364:                J2 = MIN( J+KD, N )
                    365:                CALL ZCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
                    366:    50       CONTINUE
                    367:          END IF
                    368: *
                    369:          CALL ZPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
                    370: *
                    371: *        Return if INFO is non-zero.
                    372: *
                    373:          IF( INFO.GT.0 )THEN
                    374:             RCOND = ZERO
                    375:             RETURN
                    376:          END IF
                    377:       END IF
                    378: *
                    379: *     Compute the norm of the matrix A.
                    380: *
                    381:       ANORM = ZLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
                    382: *
                    383: *     Compute the reciprocal of the condition number of A.
                    384: *
                    385:       CALL ZPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
                    386:      $             INFO )
                    387: *
                    388: *     Compute the solution matrix X.
                    389: *
                    390:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    391:       CALL ZPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
                    392: *
                    393: *     Use iterative refinement to improve the computed solution and
                    394: *     compute error bounds and backward error estimates for it.
                    395: *
                    396:       CALL ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
                    397:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    398: *
                    399: *     Transform the solution matrix X to a solution of the original
                    400: *     system.
                    401: *
                    402:       IF( RCEQU ) THEN
                    403:          DO 70 J = 1, NRHS
                    404:             DO 60 I = 1, N
                    405:                X( I, J ) = S( I )*X( I, J )
                    406:    60       CONTINUE
                    407:    70    CONTINUE
                    408:          DO 80 J = 1, NRHS
                    409:             FERR( J ) = FERR( J ) / SCOND
                    410:    80    CONTINUE
                    411:       END IF
                    412: *
                    413: *     Set INFO = N+1 if the matrix is singular to working precision.
                    414: *
                    415:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    416:      $   INFO = N + 1
                    417: *
                    418:       RETURN
                    419: *
                    420: *     End of ZPBSVX
                    421: *
                    422:       END

CVSweb interface <joel.bertrand@systella.fr>