File:  [local] / rpl / lapack / lapack / zpbstf.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:18 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, KD, LDAB, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       COMPLEX*16         AB( LDAB, * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  ZPBSTF computes a split Cholesky factorization of a complex
   20: *  Hermitian positive definite band matrix A.
   21: *
   22: *  This routine is designed to be used in conjunction with ZHBGST.
   23: *
   24: *  The factorization has the form  A = S**H*S  where S is a band matrix
   25: *  of the same bandwidth as A and the following structure:
   26: *
   27: *    S = ( U    )
   28: *        ( M  L )
   29: *
   30: *  where U is upper triangular of order m = (n+kd)/2, and L is lower
   31: *  triangular of order n-m.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  UPLO    (input) CHARACTER*1
   37: *          = 'U':  Upper triangle of A is stored;
   38: *          = 'L':  Lower triangle of A is stored.
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix A.  N >= 0.
   42: *
   43: *  KD      (input) INTEGER
   44: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   45: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   46: *
   47: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
   48: *          On entry, the upper or lower triangle of the Hermitian band
   49: *          matrix A, stored in the first kd+1 rows of the array.  The
   50: *          j-th column of A is stored in the j-th column of the array AB
   51: *          as follows:
   52: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   53: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   54: *
   55: *          On exit, if INFO = 0, the factor S from the split Cholesky
   56: *          factorization A = S**H*S. See Further Details.
   57: *
   58: *  LDAB    (input) INTEGER
   59: *          The leading dimension of the array AB.  LDAB >= KD+1.
   60: *
   61: *  INFO    (output) INTEGER
   62: *          = 0: successful exit
   63: *          < 0: if INFO = -i, the i-th argument had an illegal value
   64: *          > 0: if INFO = i, the factorization could not be completed,
   65: *               because the updated element a(i,i) was negative; the
   66: *               matrix A is not positive definite.
   67: *
   68: *  Further Details
   69: *  ===============
   70: *
   71: *  The band storage scheme is illustrated by the following example, when
   72: *  N = 7, KD = 2:
   73: *
   74: *  S = ( s11  s12  s13                     )
   75: *      (      s22  s23  s24                )
   76: *      (           s33  s34                )
   77: *      (                s44                )
   78: *      (           s53  s54  s55           )
   79: *      (                s64  s65  s66      )
   80: *      (                     s75  s76  s77 )
   81: *
   82: *  If UPLO = 'U', the array AB holds:
   83: *
   84: *  on entry:                          on exit:
   85: *
   86: *   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
   87: *   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
   88: *  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
   89: *
   90: *  If UPLO = 'L', the array AB holds:
   91: *
   92: *  on entry:                          on exit:
   93: *
   94: *  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
   95: *  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
   96: *  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
   97: *
   98: *  Array elements marked * are not used by the routine; s12**H denotes
   99: *  conjg(s12); the diagonal elements of S are real.
  100: 
  101: *
  102: *  =====================================================================
  103: *
  104: *     .. Parameters ..
  105:       DOUBLE PRECISION   ONE, ZERO
  106:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  107: *     ..
  108: *     .. Local Scalars ..
  109:       LOGICAL            UPPER
  110:       INTEGER            J, KLD, KM, M
  111:       DOUBLE PRECISION   AJJ
  112: *     ..
  113: *     .. External Functions ..
  114:       LOGICAL            LSAME
  115:       EXTERNAL           LSAME
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC          DBLE, MAX, MIN, SQRT
  122: *     ..
  123: *     .. Executable Statements ..
  124: *
  125: *     Test the input parameters.
  126: *
  127:       INFO = 0
  128:       UPPER = LSAME( UPLO, 'U' )
  129:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  130:          INFO = -1
  131:       ELSE IF( N.LT.0 ) THEN
  132:          INFO = -2
  133:       ELSE IF( KD.LT.0 ) THEN
  134:          INFO = -3
  135:       ELSE IF( LDAB.LT.KD+1 ) THEN
  136:          INFO = -5
  137:       END IF
  138:       IF( INFO.NE.0 ) THEN
  139:          CALL XERBLA( 'ZPBSTF', -INFO )
  140:          RETURN
  141:       END IF
  142: *
  143: *     Quick return if possible
  144: *
  145:       IF( N.EQ.0 )
  146:      $   RETURN
  147: *
  148:       KLD = MAX( 1, LDAB-1 )
  149: *
  150: *     Set the splitting point m.
  151: *
  152:       M = ( N+KD ) / 2
  153: *
  154:       IF( UPPER ) THEN
  155: *
  156: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  157: *
  158:          DO 10 J = N, M + 1, -1
  159: *
  160: *           Compute s(j,j) and test for non-positive-definiteness.
  161: *
  162:             AJJ = DBLE( AB( KD+1, J ) )
  163:             IF( AJJ.LE.ZERO ) THEN
  164:                AB( KD+1, J ) = AJJ
  165:                GO TO 50
  166:             END IF
  167:             AJJ = SQRT( AJJ )
  168:             AB( KD+1, J ) = AJJ
  169:             KM = MIN( J-1, KD )
  170: *
  171: *           Compute elements j-km:j-1 of the j-th column and update the
  172: *           the leading submatrix within the band.
  173: *
  174:             CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
  175:             CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
  176:      $                 AB( KD+1, J-KM ), KLD )
  177:    10    CONTINUE
  178: *
  179: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  180: *
  181:          DO 20 J = 1, M
  182: *
  183: *           Compute s(j,j) and test for non-positive-definiteness.
  184: *
  185:             AJJ = DBLE( AB( KD+1, J ) )
  186:             IF( AJJ.LE.ZERO ) THEN
  187:                AB( KD+1, J ) = AJJ
  188:                GO TO 50
  189:             END IF
  190:             AJJ = SQRT( AJJ )
  191:             AB( KD+1, J ) = AJJ
  192:             KM = MIN( KD, M-J )
  193: *
  194: *           Compute elements j+1:j+km of the j-th row and update the
  195: *           trailing submatrix within the band.
  196: *
  197:             IF( KM.GT.0 ) THEN
  198:                CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
  199:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  200:                CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
  201:      $                    AB( KD+1, J+1 ), KLD )
  202:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  203:             END IF
  204:    20    CONTINUE
  205:       ELSE
  206: *
  207: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  208: *
  209:          DO 30 J = N, M + 1, -1
  210: *
  211: *           Compute s(j,j) and test for non-positive-definiteness.
  212: *
  213:             AJJ = DBLE( AB( 1, J ) )
  214:             IF( AJJ.LE.ZERO ) THEN
  215:                AB( 1, J ) = AJJ
  216:                GO TO 50
  217:             END IF
  218:             AJJ = SQRT( AJJ )
  219:             AB( 1, J ) = AJJ
  220:             KM = MIN( J-1, KD )
  221: *
  222: *           Compute elements j-km:j-1 of the j-th row and update the
  223: *           trailing submatrix within the band.
  224: *
  225:             CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
  226:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  227:             CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
  228:      $                 AB( 1, J-KM ), KLD )
  229:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  230:    30    CONTINUE
  231: *
  232: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  233: *
  234:          DO 40 J = 1, M
  235: *
  236: *           Compute s(j,j) and test for non-positive-definiteness.
  237: *
  238:             AJJ = DBLE( AB( 1, J ) )
  239:             IF( AJJ.LE.ZERO ) THEN
  240:                AB( 1, J ) = AJJ
  241:                GO TO 50
  242:             END IF
  243:             AJJ = SQRT( AJJ )
  244:             AB( 1, J ) = AJJ
  245:             KM = MIN( KD, M-J )
  246: *
  247: *           Compute elements j+1:j+km of the j-th column and update the
  248: *           trailing submatrix within the band.
  249: *
  250:             IF( KM.GT.0 ) THEN
  251:                CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
  252:                CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
  253:      $                    AB( 1, J+1 ), KLD )
  254:             END IF
  255:    40    CONTINUE
  256:       END IF
  257:       RETURN
  258: *
  259:    50 CONTINUE
  260:       INFO = J
  261:       RETURN
  262: *
  263: *     End of ZPBSTF
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>