File:  [local] / rpl / lapack / lapack / zpbstf.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:38 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZPBSTF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPBSTF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbstf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbstf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbstf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KD, LDAB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         AB( LDAB, * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZPBSTF computes a split Cholesky factorization of a complex
   38: *> Hermitian positive definite band matrix A.
   39: *>
   40: *> This routine is designed to be used in conjunction with ZHBGST.
   41: *>
   42: *> The factorization has the form  A = S**H*S  where S is a band matrix
   43: *> of the same bandwidth as A and the following structure:
   44: *>
   45: *>   S = ( U    )
   46: *>       ( M  L )
   47: *>
   48: *> where U is upper triangular of order m = (n+kd)/2, and L is lower
   49: *> triangular of order n-m.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] UPLO
   56: *> \verbatim
   57: *>          UPLO is CHARACTER*1
   58: *>          = 'U':  Upper triangle of A is stored;
   59: *>          = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] KD
   69: *> \verbatim
   70: *>          KD is INTEGER
   71: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   72: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] AB
   76: *> \verbatim
   77: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   78: *>          On entry, the upper or lower triangle of the Hermitian band
   79: *>          matrix A, stored in the first kd+1 rows of the array.  The
   80: *>          j-th column of A is stored in the j-th column of the array AB
   81: *>          as follows:
   82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   84: *>
   85: *>          On exit, if INFO = 0, the factor S from the split Cholesky
   86: *>          factorization A = S**H*S. See Further Details.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDAB
   90: *> \verbatim
   91: *>          LDAB is INTEGER
   92: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] INFO
   96: *> \verbatim
   97: *>          INFO is INTEGER
   98: *>          = 0: successful exit
   99: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  100: *>          > 0: if INFO = i, the factorization could not be completed,
  101: *>               because the updated element a(i,i) was negative; the
  102: *>               matrix A is not positive definite.
  103: *> \endverbatim
  104: *
  105: *  Authors:
  106: *  ========
  107: *
  108: *> \author Univ. of Tennessee 
  109: *> \author Univ. of California Berkeley 
  110: *> \author Univ. of Colorado Denver 
  111: *> \author NAG Ltd. 
  112: *
  113: *> \date November 2011
  114: *
  115: *> \ingroup complex16OTHERcomputational
  116: *
  117: *> \par Further Details:
  118: *  =====================
  119: *>
  120: *> \verbatim
  121: *>
  122: *>  The band storage scheme is illustrated by the following example, when
  123: *>  N = 7, KD = 2:
  124: *>
  125: *>  S = ( s11  s12  s13                     )
  126: *>      (      s22  s23  s24                )
  127: *>      (           s33  s34                )
  128: *>      (                s44                )
  129: *>      (           s53  s54  s55           )
  130: *>      (                s64  s65  s66      )
  131: *>      (                     s75  s76  s77 )
  132: *>
  133: *>  If UPLO = 'U', the array AB holds:
  134: *>
  135: *>  on entry:                          on exit:
  136: *>
  137: *>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
  138: *>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
  139: *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
  140: *>
  141: *>  If UPLO = 'L', the array AB holds:
  142: *>
  143: *>  on entry:                          on exit:
  144: *>
  145: *>  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
  146: *>  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
  147: *>  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
  148: *>
  149: *>  Array elements marked * are not used by the routine; s12**H denotes
  150: *>  conjg(s12); the diagonal elements of S are real.
  151: *> \endverbatim
  152: *>
  153: *  =====================================================================
  154:       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  155: *
  156: *  -- LAPACK computational routine (version 3.4.0) --
  157: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  158: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159: *     November 2011
  160: *
  161: *     .. Scalar Arguments ..
  162:       CHARACTER          UPLO
  163:       INTEGER            INFO, KD, LDAB, N
  164: *     ..
  165: *     .. Array Arguments ..
  166:       COMPLEX*16         AB( LDAB, * )
  167: *     ..
  168: *
  169: *  =====================================================================
  170: *
  171: *     .. Parameters ..
  172:       DOUBLE PRECISION   ONE, ZERO
  173:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  174: *     ..
  175: *     .. Local Scalars ..
  176:       LOGICAL            UPPER
  177:       INTEGER            J, KLD, KM, M
  178:       DOUBLE PRECISION   AJJ
  179: *     ..
  180: *     .. External Functions ..
  181:       LOGICAL            LSAME
  182:       EXTERNAL           LSAME
  183: *     ..
  184: *     .. External Subroutines ..
  185:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
  186: *     ..
  187: *     .. Intrinsic Functions ..
  188:       INTRINSIC          DBLE, MAX, MIN, SQRT
  189: *     ..
  190: *     .. Executable Statements ..
  191: *
  192: *     Test the input parameters.
  193: *
  194:       INFO = 0
  195:       UPPER = LSAME( UPLO, 'U' )
  196:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  197:          INFO = -1
  198:       ELSE IF( N.LT.0 ) THEN
  199:          INFO = -2
  200:       ELSE IF( KD.LT.0 ) THEN
  201:          INFO = -3
  202:       ELSE IF( LDAB.LT.KD+1 ) THEN
  203:          INFO = -5
  204:       END IF
  205:       IF( INFO.NE.0 ) THEN
  206:          CALL XERBLA( 'ZPBSTF', -INFO )
  207:          RETURN
  208:       END IF
  209: *
  210: *     Quick return if possible
  211: *
  212:       IF( N.EQ.0 )
  213:      $   RETURN
  214: *
  215:       KLD = MAX( 1, LDAB-1 )
  216: *
  217: *     Set the splitting point m.
  218: *
  219:       M = ( N+KD ) / 2
  220: *
  221:       IF( UPPER ) THEN
  222: *
  223: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  224: *
  225:          DO 10 J = N, M + 1, -1
  226: *
  227: *           Compute s(j,j) and test for non-positive-definiteness.
  228: *
  229:             AJJ = DBLE( AB( KD+1, J ) )
  230:             IF( AJJ.LE.ZERO ) THEN
  231:                AB( KD+1, J ) = AJJ
  232:                GO TO 50
  233:             END IF
  234:             AJJ = SQRT( AJJ )
  235:             AB( KD+1, J ) = AJJ
  236:             KM = MIN( J-1, KD )
  237: *
  238: *           Compute elements j-km:j-1 of the j-th column and update the
  239: *           the leading submatrix within the band.
  240: *
  241:             CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
  242:             CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
  243:      $                 AB( KD+1, J-KM ), KLD )
  244:    10    CONTINUE
  245: *
  246: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  247: *
  248:          DO 20 J = 1, M
  249: *
  250: *           Compute s(j,j) and test for non-positive-definiteness.
  251: *
  252:             AJJ = DBLE( AB( KD+1, J ) )
  253:             IF( AJJ.LE.ZERO ) THEN
  254:                AB( KD+1, J ) = AJJ
  255:                GO TO 50
  256:             END IF
  257:             AJJ = SQRT( AJJ )
  258:             AB( KD+1, J ) = AJJ
  259:             KM = MIN( KD, M-J )
  260: *
  261: *           Compute elements j+1:j+km of the j-th row and update the
  262: *           trailing submatrix within the band.
  263: *
  264:             IF( KM.GT.0 ) THEN
  265:                CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
  266:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  267:                CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
  268:      $                    AB( KD+1, J+1 ), KLD )
  269:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  270:             END IF
  271:    20    CONTINUE
  272:       ELSE
  273: *
  274: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  275: *
  276:          DO 30 J = N, M + 1, -1
  277: *
  278: *           Compute s(j,j) and test for non-positive-definiteness.
  279: *
  280:             AJJ = DBLE( AB( 1, J ) )
  281:             IF( AJJ.LE.ZERO ) THEN
  282:                AB( 1, J ) = AJJ
  283:                GO TO 50
  284:             END IF
  285:             AJJ = SQRT( AJJ )
  286:             AB( 1, J ) = AJJ
  287:             KM = MIN( J-1, KD )
  288: *
  289: *           Compute elements j-km:j-1 of the j-th row and update the
  290: *           trailing submatrix within the band.
  291: *
  292:             CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
  293:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  294:             CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
  295:      $                 AB( 1, J-KM ), KLD )
  296:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  297:    30    CONTINUE
  298: *
  299: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  300: *
  301:          DO 40 J = 1, M
  302: *
  303: *           Compute s(j,j) and test for non-positive-definiteness.
  304: *
  305:             AJJ = DBLE( AB( 1, J ) )
  306:             IF( AJJ.LE.ZERO ) THEN
  307:                AB( 1, J ) = AJJ
  308:                GO TO 50
  309:             END IF
  310:             AJJ = SQRT( AJJ )
  311:             AB( 1, J ) = AJJ
  312:             KM = MIN( KD, M-J )
  313: *
  314: *           Compute elements j+1:j+km of the j-th column and update the
  315: *           trailing submatrix within the band.
  316: *
  317:             IF( KM.GT.0 ) THEN
  318:                CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
  319:                CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
  320:      $                    AB( 1, J+1 ), KLD )
  321:             END IF
  322:    40    CONTINUE
  323:       END IF
  324:       RETURN
  325: *
  326:    50 CONTINUE
  327:       INFO = J
  328:       RETURN
  329: *
  330: *     End of ZPBSTF
  331: *
  332:       END

CVSweb interface <joel.bertrand@systella.fr>