Annotation of rpl/lapack/lapack/zpbstf.f, revision 1.18

1.9       bertrand    1: *> \brief \b ZPBSTF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZPBSTF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbstf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbstf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbstf.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KD, LDAB, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       COMPLEX*16         AB( LDAB, * )
                     29: *       ..
1.15      bertrand   30: *
1.9       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZPBSTF computes a split Cholesky factorization of a complex
                     38: *> Hermitian positive definite band matrix A.
                     39: *>
                     40: *> This routine is designed to be used in conjunction with ZHBGST.
                     41: *>
                     42: *> The factorization has the form  A = S**H*S  where S is a band matrix
                     43: *> of the same bandwidth as A and the following structure:
                     44: *>
                     45: *>   S = ( U    )
                     46: *>       ( M  L )
                     47: *>
                     48: *> where U is upper triangular of order m = (n+kd)/2, and L is lower
                     49: *> triangular of order n-m.
                     50: *> \endverbatim
                     51: *
                     52: *  Arguments:
                     53: *  ==========
                     54: *
                     55: *> \param[in] UPLO
                     56: *> \verbatim
                     57: *>          UPLO is CHARACTER*1
                     58: *>          = 'U':  Upper triangle of A is stored;
                     59: *>          = 'L':  Lower triangle of A is stored.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] N
                     63: *> \verbatim
                     64: *>          N is INTEGER
                     65: *>          The order of the matrix A.  N >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] KD
                     69: *> \verbatim
                     70: *>          KD is INTEGER
                     71: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     72: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in,out] AB
                     76: *> \verbatim
                     77: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
                     78: *>          On entry, the upper or lower triangle of the Hermitian band
                     79: *>          matrix A, stored in the first kd+1 rows of the array.  The
                     80: *>          j-th column of A is stored in the j-th column of the array AB
                     81: *>          as follows:
                     82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     84: *>
                     85: *>          On exit, if INFO = 0, the factor S from the split Cholesky
                     86: *>          factorization A = S**H*S. See Further Details.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] LDAB
                     90: *> \verbatim
                     91: *>          LDAB is INTEGER
                     92: *>          The leading dimension of the array AB.  LDAB >= KD+1.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[out] INFO
                     96: *> \verbatim
                     97: *>          INFO is INTEGER
                     98: *>          = 0: successful exit
                     99: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    100: *>          > 0: if INFO = i, the factorization could not be completed,
                    101: *>               because the updated element a(i,i) was negative; the
                    102: *>               matrix A is not positive definite.
                    103: *> \endverbatim
                    104: *
                    105: *  Authors:
                    106: *  ========
                    107: *
1.15      bertrand  108: *> \author Univ. of Tennessee
                    109: *> \author Univ. of California Berkeley
                    110: *> \author Univ. of Colorado Denver
                    111: *> \author NAG Ltd.
1.9       bertrand  112: *
                    113: *> \ingroup complex16OTHERcomputational
                    114: *
                    115: *> \par Further Details:
                    116: *  =====================
                    117: *>
                    118: *> \verbatim
                    119: *>
                    120: *>  The band storage scheme is illustrated by the following example, when
                    121: *>  N = 7, KD = 2:
                    122: *>
                    123: *>  S = ( s11  s12  s13                     )
                    124: *>      (      s22  s23  s24                )
                    125: *>      (           s33  s34                )
                    126: *>      (                s44                )
                    127: *>      (           s53  s54  s55           )
                    128: *>      (                s64  s65  s66      )
                    129: *>      (                     s75  s76  s77 )
                    130: *>
                    131: *>  If UPLO = 'U', the array AB holds:
                    132: *>
                    133: *>  on entry:                          on exit:
                    134: *>
                    135: *>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
                    136: *>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
                    137: *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
                    138: *>
                    139: *>  If UPLO = 'L', the array AB holds:
                    140: *>
                    141: *>  on entry:                          on exit:
                    142: *>
                    143: *>  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
                    144: *>  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
                    145: *>  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
                    146: *>
                    147: *>  Array elements marked * are not used by the routine; s12**H denotes
                    148: *>  conjg(s12); the diagonal elements of S are real.
                    149: *> \endverbatim
                    150: *>
                    151: *  =====================================================================
1.1       bertrand  152:       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
                    153: *
1.18    ! bertrand  154: *  -- LAPACK computational routine --
1.1       bertrand  155: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    156: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    157: *
                    158: *     .. Scalar Arguments ..
                    159:       CHARACTER          UPLO
                    160:       INTEGER            INFO, KD, LDAB, N
                    161: *     ..
                    162: *     .. Array Arguments ..
                    163:       COMPLEX*16         AB( LDAB, * )
                    164: *     ..
                    165: *
                    166: *  =====================================================================
                    167: *
                    168: *     .. Parameters ..
                    169:       DOUBLE PRECISION   ONE, ZERO
                    170:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    171: *     ..
                    172: *     .. Local Scalars ..
                    173:       LOGICAL            UPPER
                    174:       INTEGER            J, KLD, KM, M
                    175:       DOUBLE PRECISION   AJJ
                    176: *     ..
                    177: *     .. External Functions ..
                    178:       LOGICAL            LSAME
                    179:       EXTERNAL           LSAME
                    180: *     ..
                    181: *     .. External Subroutines ..
                    182:       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
                    183: *     ..
                    184: *     .. Intrinsic Functions ..
                    185:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    186: *     ..
                    187: *     .. Executable Statements ..
                    188: *
                    189: *     Test the input parameters.
                    190: *
                    191:       INFO = 0
                    192:       UPPER = LSAME( UPLO, 'U' )
                    193:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    194:          INFO = -1
                    195:       ELSE IF( N.LT.0 ) THEN
                    196:          INFO = -2
                    197:       ELSE IF( KD.LT.0 ) THEN
                    198:          INFO = -3
                    199:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    200:          INFO = -5
                    201:       END IF
                    202:       IF( INFO.NE.0 ) THEN
                    203:          CALL XERBLA( 'ZPBSTF', -INFO )
                    204:          RETURN
                    205:       END IF
                    206: *
                    207: *     Quick return if possible
                    208: *
                    209:       IF( N.EQ.0 )
                    210:      $   RETURN
                    211: *
                    212:       KLD = MAX( 1, LDAB-1 )
                    213: *
                    214: *     Set the splitting point m.
                    215: *
                    216:       M = ( N+KD ) / 2
                    217: *
                    218:       IF( UPPER ) THEN
                    219: *
                    220: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
                    221: *
                    222:          DO 10 J = N, M + 1, -1
                    223: *
                    224: *           Compute s(j,j) and test for non-positive-definiteness.
                    225: *
                    226:             AJJ = DBLE( AB( KD+1, J ) )
                    227:             IF( AJJ.LE.ZERO ) THEN
                    228:                AB( KD+1, J ) = AJJ
                    229:                GO TO 50
                    230:             END IF
                    231:             AJJ = SQRT( AJJ )
                    232:             AB( KD+1, J ) = AJJ
                    233:             KM = MIN( J-1, KD )
                    234: *
                    235: *           Compute elements j-km:j-1 of the j-th column and update the
                    236: *           the leading submatrix within the band.
                    237: *
                    238:             CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
                    239:             CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
                    240:      $                 AB( KD+1, J-KM ), KLD )
                    241:    10    CONTINUE
                    242: *
                    243: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
                    244: *
                    245:          DO 20 J = 1, M
                    246: *
                    247: *           Compute s(j,j) and test for non-positive-definiteness.
                    248: *
                    249:             AJJ = DBLE( AB( KD+1, J ) )
                    250:             IF( AJJ.LE.ZERO ) THEN
                    251:                AB( KD+1, J ) = AJJ
                    252:                GO TO 50
                    253:             END IF
                    254:             AJJ = SQRT( AJJ )
                    255:             AB( KD+1, J ) = AJJ
                    256:             KM = MIN( KD, M-J )
                    257: *
                    258: *           Compute elements j+1:j+km of the j-th row and update the
                    259: *           trailing submatrix within the band.
                    260: *
                    261:             IF( KM.GT.0 ) THEN
                    262:                CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
                    263:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
                    264:                CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
                    265:      $                    AB( KD+1, J+1 ), KLD )
                    266:                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
                    267:             END IF
                    268:    20    CONTINUE
                    269:       ELSE
                    270: *
                    271: *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
                    272: *
                    273:          DO 30 J = N, M + 1, -1
                    274: *
                    275: *           Compute s(j,j) and test for non-positive-definiteness.
                    276: *
                    277:             AJJ = DBLE( AB( 1, J ) )
                    278:             IF( AJJ.LE.ZERO ) THEN
                    279:                AB( 1, J ) = AJJ
                    280:                GO TO 50
                    281:             END IF
                    282:             AJJ = SQRT( AJJ )
                    283:             AB( 1, J ) = AJJ
                    284:             KM = MIN( J-1, KD )
                    285: *
                    286: *           Compute elements j-km:j-1 of the j-th row and update the
                    287: *           trailing submatrix within the band.
                    288: *
                    289:             CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
                    290:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
                    291:             CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
                    292:      $                 AB( 1, J-KM ), KLD )
                    293:             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
                    294:    30    CONTINUE
                    295: *
                    296: *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
                    297: *
                    298:          DO 40 J = 1, M
                    299: *
                    300: *           Compute s(j,j) and test for non-positive-definiteness.
                    301: *
                    302:             AJJ = DBLE( AB( 1, J ) )
                    303:             IF( AJJ.LE.ZERO ) THEN
                    304:                AB( 1, J ) = AJJ
                    305:                GO TO 50
                    306:             END IF
                    307:             AJJ = SQRT( AJJ )
                    308:             AB( 1, J ) = AJJ
                    309:             KM = MIN( KD, M-J )
                    310: *
                    311: *           Compute elements j+1:j+km of the j-th column and update the
                    312: *           trailing submatrix within the band.
                    313: *
                    314:             IF( KM.GT.0 ) THEN
                    315:                CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
                    316:                CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
                    317:      $                    AB( 1, J+1 ), KLD )
                    318:             END IF
                    319:    40    CONTINUE
                    320:       END IF
                    321:       RETURN
                    322: *
                    323:    50 CONTINUE
                    324:       INFO = J
                    325:       RETURN
                    326: *
                    327: *     End of ZPBSTF
                    328: *
                    329:       END

CVSweb interface <joel.bertrand@systella.fr>