File:  [local] / rpl / lapack / lapack / zpbrfs.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:18 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
    2:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   17:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   18:      $                   WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZPBRFS improves the computed solution to a system of linear
   25: *  equations when the coefficient matrix is Hermitian positive definite
   26: *  and banded, and provides error bounds and backward error estimates
   27: *  for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  KD      (input) INTEGER
   40: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   41: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   42: *
   43: *  NRHS    (input) INTEGER
   44: *          The number of right hand sides, i.e., the number of columns
   45: *          of the matrices B and X.  NRHS >= 0.
   46: *
   47: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   48: *          The upper or lower triangle of the Hermitian band matrix A,
   49: *          stored in the first KD+1 rows of the array.  The j-th column
   50: *          of A is stored in the j-th column of the array AB as follows:
   51: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   52: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   53: *
   54: *  LDAB    (input) INTEGER
   55: *          The leading dimension of the array AB.  LDAB >= KD+1.
   56: *
   57: *  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
   58: *          The triangular factor U or L from the Cholesky factorization
   59: *          A = U**H*U or A = L*L**H of the band matrix A as computed by
   60: *          ZPBTRF, in the same storage format as A (see AB).
   61: *
   62: *  LDAFB   (input) INTEGER
   63: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
   64: *
   65: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   66: *          The right hand side matrix B.
   67: *
   68: *  LDB     (input) INTEGER
   69: *          The leading dimension of the array B.  LDB >= max(1,N).
   70: *
   71: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
   72: *          On entry, the solution matrix X, as computed by ZPBTRS.
   73: *          On exit, the improved solution matrix X.
   74: *
   75: *  LDX     (input) INTEGER
   76: *          The leading dimension of the array X.  LDX >= max(1,N).
   77: *
   78: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   79: *          The estimated forward error bound for each solution vector
   80: *          X(j) (the j-th column of the solution matrix X).
   81: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   82: *          is an estimated upper bound for the magnitude of the largest
   83: *          element in (X(j) - XTRUE) divided by the magnitude of the
   84: *          largest element in X(j).  The estimate is as reliable as
   85: *          the estimate for RCOND, and is almost always a slight
   86: *          overestimate of the true error.
   87: *
   88: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   89: *          The componentwise relative backward error of each solution
   90: *          vector X(j) (i.e., the smallest relative change in
   91: *          any element of A or B that makes X(j) an exact solution).
   92: *
   93: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   94: *
   95: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   96: *
   97: *  INFO    (output) INTEGER
   98: *          = 0:  successful exit
   99: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  100: *
  101: *  Internal Parameters
  102: *  ===================
  103: *
  104: *  ITMAX is the maximum number of steps of iterative refinement.
  105: *
  106: *  =====================================================================
  107: *
  108: *     .. Parameters ..
  109:       INTEGER            ITMAX
  110:       PARAMETER          ( ITMAX = 5 )
  111:       DOUBLE PRECISION   ZERO
  112:       PARAMETER          ( ZERO = 0.0D+0 )
  113:       COMPLEX*16         ONE
  114:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  115:       DOUBLE PRECISION   TWO
  116:       PARAMETER          ( TWO = 2.0D+0 )
  117:       DOUBLE PRECISION   THREE
  118:       PARAMETER          ( THREE = 3.0D+0 )
  119: *     ..
  120: *     .. Local Scalars ..
  121:       LOGICAL            UPPER
  122:       INTEGER            COUNT, I, J, K, KASE, L, NZ
  123:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  124:       COMPLEX*16         ZDUM
  125: *     ..
  126: *     .. Local Arrays ..
  127:       INTEGER            ISAVE( 3 )
  128: *     ..
  129: *     .. External Subroutines ..
  130:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHBMV, ZLACN2, ZPBTRS
  131: *     ..
  132: *     .. Intrinsic Functions ..
  133:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  134: *     ..
  135: *     .. External Functions ..
  136:       LOGICAL            LSAME
  137:       DOUBLE PRECISION   DLAMCH
  138:       EXTERNAL           LSAME, DLAMCH
  139: *     ..
  140: *     .. Statement Functions ..
  141:       DOUBLE PRECISION   CABS1
  142: *     ..
  143: *     .. Statement Function definitions ..
  144:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  145: *     ..
  146: *     .. Executable Statements ..
  147: *
  148: *     Test the input parameters.
  149: *
  150:       INFO = 0
  151:       UPPER = LSAME( UPLO, 'U' )
  152:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  153:          INFO = -1
  154:       ELSE IF( N.LT.0 ) THEN
  155:          INFO = -2
  156:       ELSE IF( KD.LT.0 ) THEN
  157:          INFO = -3
  158:       ELSE IF( NRHS.LT.0 ) THEN
  159:          INFO = -4
  160:       ELSE IF( LDAB.LT.KD+1 ) THEN
  161:          INFO = -6
  162:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  163:          INFO = -8
  164:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  165:          INFO = -10
  166:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  167:          INFO = -12
  168:       END IF
  169:       IF( INFO.NE.0 ) THEN
  170:          CALL XERBLA( 'ZPBRFS', -INFO )
  171:          RETURN
  172:       END IF
  173: *
  174: *     Quick return if possible
  175: *
  176:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  177:          DO 10 J = 1, NRHS
  178:             FERR( J ) = ZERO
  179:             BERR( J ) = ZERO
  180:    10    CONTINUE
  181:          RETURN
  182:       END IF
  183: *
  184: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  185: *
  186:       NZ = MIN( N+1, 2*KD+2 )
  187:       EPS = DLAMCH( 'Epsilon' )
  188:       SAFMIN = DLAMCH( 'Safe minimum' )
  189:       SAFE1 = NZ*SAFMIN
  190:       SAFE2 = SAFE1 / EPS
  191: *
  192: *     Do for each right hand side
  193: *
  194:       DO 140 J = 1, NRHS
  195: *
  196:          COUNT = 1
  197:          LSTRES = THREE
  198:    20    CONTINUE
  199: *
  200: *        Loop until stopping criterion is satisfied.
  201: *
  202: *        Compute residual R = B - A * X
  203: *
  204:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  205:          CALL ZHBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  206:      $               WORK, 1 )
  207: *
  208: *        Compute componentwise relative backward error from formula
  209: *
  210: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  211: *
  212: *        where abs(Z) is the componentwise absolute value of the matrix
  213: *        or vector Z.  If the i-th component of the denominator is less
  214: *        than SAFE2, then SAFE1 is added to the i-th components of the
  215: *        numerator and denominator before dividing.
  216: *
  217:          DO 30 I = 1, N
  218:             RWORK( I ) = CABS1( B( I, J ) )
  219:    30    CONTINUE
  220: *
  221: *        Compute abs(A)*abs(X) + abs(B).
  222: *
  223:          IF( UPPER ) THEN
  224:             DO 50 K = 1, N
  225:                S = ZERO
  226:                XK = CABS1( X( K, J ) )
  227:                L = KD + 1 - K
  228:                DO 40 I = MAX( 1, K-KD ), K - 1
  229:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  230:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  231:    40          CONTINUE
  232:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( KD+1, K ) ) )*
  233:      $                      XK + S
  234:    50       CONTINUE
  235:          ELSE
  236:             DO 70 K = 1, N
  237:                S = ZERO
  238:                XK = CABS1( X( K, J ) )
  239:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( 1, K ) ) )*XK
  240:                L = 1 - K
  241:                DO 60 I = K + 1, MIN( N, K+KD )
  242:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  243:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  244:    60          CONTINUE
  245:                RWORK( K ) = RWORK( K ) + S
  246:    70       CONTINUE
  247:          END IF
  248:          S = ZERO
  249:          DO 80 I = 1, N
  250:             IF( RWORK( I ).GT.SAFE2 ) THEN
  251:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  252:             ELSE
  253:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  254:      $             ( RWORK( I )+SAFE1 ) )
  255:             END IF
  256:    80    CONTINUE
  257:          BERR( J ) = S
  258: *
  259: *        Test stopping criterion. Continue iterating if
  260: *           1) The residual BERR(J) is larger than machine epsilon, and
  261: *           2) BERR(J) decreased by at least a factor of 2 during the
  262: *              last iteration, and
  263: *           3) At most ITMAX iterations tried.
  264: *
  265:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  266:      $       COUNT.LE.ITMAX ) THEN
  267: *
  268: *           Update solution and try again.
  269: *
  270:             CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  271:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  272:             LSTRES = BERR( J )
  273:             COUNT = COUNT + 1
  274:             GO TO 20
  275:          END IF
  276: *
  277: *        Bound error from formula
  278: *
  279: *        norm(X - XTRUE) / norm(X) .le. FERR =
  280: *        norm( abs(inv(A))*
  281: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  282: *
  283: *        where
  284: *          norm(Z) is the magnitude of the largest component of Z
  285: *          inv(A) is the inverse of A
  286: *          abs(Z) is the componentwise absolute value of the matrix or
  287: *             vector Z
  288: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  289: *          EPS is machine epsilon
  290: *
  291: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  292: *        is incremented by SAFE1 if the i-th component of
  293: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  294: *
  295: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  296: *           inv(A) * diag(W),
  297: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  298: *
  299:          DO 90 I = 1, N
  300:             IF( RWORK( I ).GT.SAFE2 ) THEN
  301:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  302:             ELSE
  303:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  304:      $                      SAFE1
  305:             END IF
  306:    90    CONTINUE
  307: *
  308:          KASE = 0
  309:   100    CONTINUE
  310:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  311:          IF( KASE.NE.0 ) THEN
  312:             IF( KASE.EQ.1 ) THEN
  313: *
  314: *              Multiply by diag(W)*inv(A**H).
  315: *
  316:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  317:                DO 110 I = 1, N
  318:                   WORK( I ) = RWORK( I )*WORK( I )
  319:   110          CONTINUE
  320:             ELSE IF( KASE.EQ.2 ) THEN
  321: *
  322: *              Multiply by inv(A)*diag(W).
  323: *
  324:                DO 120 I = 1, N
  325:                   WORK( I ) = RWORK( I )*WORK( I )
  326:   120          CONTINUE
  327:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  328:             END IF
  329:             GO TO 100
  330:          END IF
  331: *
  332: *        Normalize error.
  333: *
  334:          LSTRES = ZERO
  335:          DO 130 I = 1, N
  336:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  337:   130    CONTINUE
  338:          IF( LSTRES.NE.ZERO )
  339:      $      FERR( J ) = FERR( J ) / LSTRES
  340: *
  341:   140 CONTINUE
  342: *
  343:       RETURN
  344: *
  345: *     End of ZPBRFS
  346: *
  347:       END

CVSweb interface <joel.bertrand@systella.fr>